Investigation of ZnO/Waterborne Polyurethane Hybrid Coatings for Corrosion Protection of AISI 1018 Carbon Steel Substrates


ZnO nanoparticles were synthesized by the traditional sol–gel method followed by a thermal treatment at different temperatures (673 K, 873 K, or 1073 K) and addition of different amounts (2, 4, or 6 wt pct) into a commercial waterborne polyurethane (WBPU) matrix in order to produce hybrid coatings for corrosion inhibition of AISI 1018 carbon steel (CS). The different hybrid coatings were deposited by the spraying method after being magnetically stirred for 60 minutes. The effects of the thermal treatments on the structural, optical, and morphological properties of ZnO particles were analyzed by X-ray diffraction, ultraviolet visible spectroscopy (UV–vis), and scanning electron microscopy. Changes in the electrochemical performances of waterborne polyurethane-coated carbon steel attributable to the incorporation of ZnO powders were investigated by the open-circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization techniques in chloride medium. Also, structural, chemical, and mechanical properties were characterized in the hybrid coatings to evaluate the interaction type, UV degradation, adhesion, and hardness. The results revealed that the crystallite size of ZnO particles was within the interval ranging from 33.10 ± 0.02 to 72.00 ± 0.05 nm, which increased with the increasing temperature of thermal treatment. The treatment temperature modified the morphology of the ZnO particles, where a rod-type morphology was observed at 673 K, whereas agglomerated hexagonal facets were obtained at 1073 K. ZnO powders can reinforce the optical properties of WBPU coatings, which could delay the structural damage of the polymer, particularly in the UV region, and transparency can be modulated depending on the crystallite size, the amount of added ZnO, and the thermal treatment. The 6 wt pct (673 K) loading of ZnO particles during the WBPU polymerization improved the mechanical properties from 79.2 ± 4 to 165.5 ± 0.1 MPa. The electrochemical performance suggests that ZnO reinforced the barrier properties of WBPU, but at the same time supplied active protection by precipitating zinc hydroxide species in the cathodic sites. Kinetic parameters and impedance analysis showed that hybrid coatings containing 6 wt pct of the treated ZnO particles (673 K) displayed the best protection efficiency of AISI 1018 CS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    K.L. Noble: Prog. Org. Coat., 1997, vol. 32, pp. 131-136.

    CAS  Google Scholar 

  2. 2.

    D.K. Chattopadhyay, K.V.S.N. Raju: Prog. Polym. Sci., 2007, vol. 32, pp. 352-418.

    CAS  Google Scholar 

  3. 3.

    D. K. Chattopadhyay, D.C. Webster: Prog. Polym. Sci., 2009, vol. 34, pp. 1068-1133.

    CAS  Google Scholar 

  4. 4.

    X. Ye, Z. Wang, L. Ma, Q. Wang, A. Chu: Surf. Coat. Technol., 2019, vol. 358, pp. 497-504.

    CAS  Google Scholar 

  5. 5.

    M.F. Montemor: Surf. Coat. Technol., 2014, vol. 258, pp. 17-37.

    CAS  Google Scholar 

  6. 6.

    A. Ehsani, M.G. Mahjani, M. Hosseini, R. Safari, R. Moshrefi, H. M. Shiri: J. Colloid Interface Sci., 490:444–451;2017

    CAS  Google Scholar 

  7. 7.

    Z. Lei, Q. Zhang, X. Zhu, D. Ma, F. Ma, Z. Song, Y.Q. Fu: Appl. Surf. Sci., 2018, vol. 431, pp. 170-176.

    CAS  Google Scholar 

  8. 8.

    H. Huang, D. Zhang, S. Fang, J. Zhu, X. Peng: Prog. Org. Coat., 2019, vol. 126, pp. 44-52.

    CAS  Google Scholar 

  9. 9.

    J. Zhao, T. Zhou, J. Zhang, H. Chen, C. Yuan, W. Zhang, A. Zhang: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 19257-19264.

    CAS  Google Scholar 

  10. 10.

    M.M. Rahman, H. Kim: J. Appl. Polym. Sci., 2006, vol. 102, pp. 5684-5691.

    CAS  Google Scholar 

  11. 11.

    G.N. Chen, K.N. Chen: J. Appl. Polym. Sci., 1997, vol. 63, pp. 1609-1623.

    CAS  Google Scholar 

  12. 12.

    M.M. Rahman, M.H. Zahir, M.B. Haq, D.A.A. Shehri, A.M. Kumar: Coat., 2018, vol. 8, 34 pp. 1-12.

    Google Scholar 

  13. 13.

    G. Christopher, M.A. Kulandainathan, G. Harichandran: J. Coat. Technol. Res., 2015, vol. 12, pp. 657-667.

    CAS  Google Scholar 

  14. 14.

    J. Li, Z. Zhao, Y. Zhang, M. Li, Z. Luo, Luo: J. Sol-Gel Sci. Tech., 2017, 82:299-307.

    CAS  Google Scholar 

  15. 15.

    M. Hasani, M. Mahdavian, H. Yari, B. Ramezanzadeh: Prog. Org. Coat., 2018, vol. 116, pp. 90-101.

    CAS  Google Scholar 

  16. 16.

    A.M. El Saeed, M.A. El-Fattah, A.M. Azzam: Dyes. Pigm., 2015, vol. 121, pp. 282-289.

    Google Scholar 

  17. 17.

    Y. Qing, C. Yang, C. Hu, Y. Zheng, C. Liu: Appl. Surf. Sci., 2015, vol. 326, pp. 48-54.

    CAS  Google Scholar 

  18. 18.

    M.M. Alves, D.V. Cunha, C.F. Santos, N.P. Mira, M.F. Montemor: Ceram. Int., 2018, vol. 44, pp. 4467-4472.

    CAS  Google Scholar 

  19. 19.

    J.S. Park, I. Mahmud, H.J. Shin, M.K. Park, A. Ranjkesh, D.K. Lee, H.R. Kim: Appl. Suf. Sci., 2016, vol. 362, pp. 132-139.

    CAS  Google Scholar 

  20. 20.

    M. Cao, F. Wang, J. Zhu, X. Zhang, Y. Qin, L. Wang: Mater. Lett., 2017, vol. 192, pp. 1-4.

    CAS  Google Scholar 

  21. 21.

    Y.M. Im, T.H. Oh, J.A. Nathanael, S.S. Jang: Mater. Lett., 2015, vol. 147, pp. 20-24.

    CAS  Google Scholar 

  22. 22.

    G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, J.C. Knowles: Prog. Mater. Sci., 2016, vol. 77, pp. 1-79.

    CAS  Google Scholar 

  23. 23.

    H. Schmidt: J. Non-Cryst. Solids, 1988, vol. 100, pp. 51-64.

    CAS  Google Scholar 

  24. 24.

    L. Chagnon, G. Arnold, S. Giljean, M. Brogly: Prog. Org. Coat., 2013, vol. 76, pp. 1337-1345.

    CAS  Google Scholar 

  25. 25.

    C.A. Schuh: Mater. Today, 2006, vol. 9, pp. 32-40.

    CAS  Google Scholar 

  26. 26.

    ASTM: D4541-17 Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers, 2017.

  27. 27.

    M. Pudukudy, Z. Yaakob: Appl. Surf. Sci., 2014, vol. 292, pp. 520-530.

    CAS  Google Scholar 

  28. 28.

    P. Chand, A. Gaur, A. Kumar: J. Alloys Compd., 2012, vol. 539, pp. 174-178.

    CAS  Google Scholar 

  29. 29.

    K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir: Microelectron. Eng., 2014, vol. 128, pp. 53-58.

    CAS  Google Scholar 

  30. 30.

    K. Harun, N. Mansor, Z.A. Ahmad, A.A. Mohamad: Procedia Chem., 2016, vol. 19, pp. 125-132.

    CAS  Google Scholar 

  31. 31.

    K. Ocakoglu, S.A. Mansour, S. Yildirimcan, A.A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu: Spectrochim. Acta A, 2015, vol. 148, pp. 362-368.

    CAS  Google Scholar 

  32. 32.

    Y. Zhou, L. Xu, Z. Wu, P. Li, J. He: Optik, 2017, vol. 130, pp. 673-680.

    CAS  Google Scholar 

  33. 33.

    P. Kubelka, F. Munk: Z. Tech. Phys, 1931, vol. 12, pp. 593-601.

    Google Scholar 

  34. 34.

    A.E. Morales, E.S. Mora, U. Pal: Rev. Mex. Fis. E, 2007, vol. 53, pp. 18-22.

    CAS  Google Scholar 

  35. 35.

    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian: J. Alloys Compd., 2013, vol. 550, pp. 63-70.

    CAS  Google Scholar 

  36. 36.

    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner: Prog. Mater. Sci., 2005, vol. 50, pp. 293-340.

    CAS  Google Scholar 

  37. 37.

    H. Nakatani, H. Ooike, T. Kishida, S. Motokucho: Prog. Org. Coat., 2016, vol. 97, pp. 269-276.

    CAS  Google Scholar 

  38. 38.

    X. Gu, G. Chen, M. Zhao, S.S. Watson, T. Nguyen, J.W. Chin, J.W. Martin: J. Coat. Technol. Res., 2012, vol. 9, pp. 251-267.

    CAS  Google Scholar 

  39. 39.

    M. Rashvand, Z. Ranjbar, S. Rastegar: Prog. Org. Coat., 2011, vol. 71, pp. 362-368.

    CAS  Google Scholar 

  40. 40.

    A.L. Tolstov, O.V. Zinchenko, V.F. Matyushov: Theor. Exp. Chem., 2015, vol. 51, pp. 333-338.

    CAS  Google Scholar 

  41. 41.

    M.A. Reyes-Acosta, A.M. Torres-Huerta, M.A. Dominguez-Crespo, A.I. Flores-Vela, H.J. Dorantes-Rosales, E. Ramírez-Meneses: J. Alloys Compd., 2015, vol. 643, pp. S150-S158.

    CAS  Google Scholar 

  42. 42.

    B. Soltani, M. Asghari: Membranes, 2017, vol. 7, 43, pp. 1-16.

    Google Scholar 

  43. 43.

    L. Podgorski, M. de Meijer, J.D. Lanvin: Coat., 2017, vol. 7, 163 pp. 1-11.

    Google Scholar 

  44. 44.

    L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M. S. Islam: Int. J. Polym. Sci., 2015, vol. 2015 pp. 1-15.

    Google Scholar 

  45. 45.

    S. Goel, G. Cross, A. Stukowski, E. Gamsjäger, B. Beake, A. Agrawal: Comput. Mater. Sci., 2018, vol. 152, pp. 196-210.

    CAS  Google Scholar 

  46. 46.

    D. Kim, K. Jeon, Y. Lee, J. Seo, K. Seo, H. Han, S. Khan: Prog. Org. Coat., 2012, vol. 74, pp. 435-442.

    CAS  Google Scholar 

  47. 47.

    B. Poon, D. Rittel, G. Ravichandran: Int. J. Solids Struct., 2008, vol. 45, pp. 6399-6415.

    Google Scholar 

  48. 48.

    D. Del Angel-López, M.A. Domínguez-Crespo, A.M. Torres-Huerta, A. Flores-Vela, J. Andraca-Adame, H. Dorantes-Rosales: J. Mater.Sci., 2013, vol. 48, pp. 1067-1084.

    Google Scholar 

  49. 49.

    F. Mansfeld, M.W. Kendig, S. Tsai: Corros., 1982, vol. 38, pp. 478-485.

    CAS  Google Scholar 

  50. 50.

    M. Kendig, J. Scully: Corros., 1990, vol. 46, pp. 22-29.

    CAS  Google Scholar 

  51. 51.

    Y. Xua, M. Liu: Geothermics, 2017, vol. 70, pp. 339–350.

    Google Scholar 

  52. 52.

    J. Bico, U. Thiele, D. Quéré: Colloids Surf. A, 2002, vol. 206, pp. 41-46.

    CAS  Google Scholar 

  53. 53.

    X. Zhang, R. Ma, A. Du, Q.Liu, Y. Fan, X. Zhao, J. Wu, X. Cao. Applied Surface Science 484 (2019) 814–824.

    CAS  Google Scholar 

  54. 54.

    G. Christopher, M. A. Kulandainathan, G. Harichandran. Progr. Org. Coat. 99:91–102;2016.

    CAS  Google Scholar 

  55. 55.

    X. J. Raj. Journal of Materials Engineering and Performance JMEPEG (2017) 26:3245–3253.

    CAS  Google Scholar 

  56. 56.

    B.N. Zand, M. Mahdavian: Surf. Coat. Technol., 2009, vol. 203, pp. 1677–1681.

    CAS  Google Scholar 

  57. 57.

    B.N. Zand, M. Mahdavian: Electrochim. Acta, 2007, vol. 52, pp. 6438-6442.

    CAS  Google Scholar 

  58. 58.

    P. E. Plueddemann: Silane Coupling Agents, 2nd ed., Springer, New York, NY, 1991, pp. 115–152.

    Google Scholar 

  59. 59.

    T.H. Chiang, T.-E. Hsieh: Int. J. Adhes. Adhes., 2006, vol. 26, pp. 520-531.

    CAS  Google Scholar 

  60. 60.

    Y. González-García, S. González, R.M. Souto: Corros. Sci., 2007, vol. 49, pp. 3514-3526.

    Google Scholar 

  61. 61.

    S.K. Dhoke, R. Bhandari, A.S. Khanna: Prog. Org. Coat., 2009, vol. 64, pp. 39-46.

    CAS  Google Scholar 

  62. 62.

    K. Chrissafis, G. Antoniadis, K.M. Paraskevopoulos, A. Vassiliou, D.N. Bikiaris: Compos. Sci. Technol. 2007, vol. 67, pp. 2165-74.

    CAS  Google Scholar 

Download references


Patricia Salazar Bravo is grateful for the received postgraduate grant through SENER-CONACyT. The authors are also grateful for the financial support provided by the CONACYT Research Fellowship-IPN-CICATA Altamira agreement, 2014-1905 and CONACyT CB2015-252181 projects; Instituto Politécnico Nacional through the SIP2019-6650, SIP2019-6670 and SIP2019-6718 projects; as well as SNI-CONACyT.

Author information



Corresponding authors

Correspondence to D. Del Angel-López or A. M. Torres-Huerta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 1, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salazar-Bravo, P., Del Angel-López, D., Torres-Huerta, A.M. et al. Investigation of ZnO/Waterborne Polyurethane Hybrid Coatings for Corrosion Protection of AISI 1018 Carbon Steel Substrates. Metall Mater Trans A 50, 4798–4813 (2019).

Download citation