Skip to main content
Log in

A Novel Physics-Based Predictive Model for Small Fatigue Crack Growth with Microstructural Sensitivity in Cast Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A novel predictive model for microstructurally small fatigue crack growth rates was developed using a three-part methodology. First, a deterministic model was created to predict microstructurally small fatigue crack growth behavior from long fatigue crack growth data using considerations of crack tip plasticity. Subsequently, microstructural barrier characteristic spacing/strength were modeled to introduce characteristic acceleration and deceleration mechanisms of grain- and secondary phase-controlled cracks. Finally, the deterministic model was coupled with a Monte Carlo technique, and used to make predictions of lifetime distributions and S–N curves with material and component specificity. Simple, metallographically measured parameters are used to make predictions, and the model provides insight into their respective roles in controlling fatigue crack growth lifetimes, and enables design practice optimization. The model predicts that, for cast Al-Si-Mg alloy A356, increasing matrix strength, grain size, and secondary dendrite arm spacing enhances overall fatigue crack growth resistance. Comparisons are made to experimental data, and show that successful predictions are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Power law pre-exponential constant

A grain :

Grain cross-sectional area

a :

Half crack length (internal crack) or crack length (surface crack)

a t :

Transition crack length from MSC to PSC

b :

Power law exponential constant

C m :

Empirical constant relating colony size to the barrier sensitivity exponent

c :

Crack length a plus the distance from the crack tip to the next barrier

da/dN :

Crack growth rate

(da/dN)MSC :

Microstructurally small crack growth rate

(da/dN)PSC :

Physically small crack growth rate

d n :

Proportionality constant between J and δ reflecting deviation from elastic behavior

E :

Elastic modulus

f 1 :

The fraction of dislocations on the slip band that participate in crack growth

f v :

Volume fraction of secondary phase particles

G :

Shear modulus

GS :

Grain size (μm)

i :

Index for the number of barriers traversed by the crack

ΔJ :

Strain energy release rate of the crack; work per unit fracture surface area

ΔJ elastic :

Elastic component of the strain energy release rate

ΔJ MSC :

Microstructurally small crack strain energy release rate

ΔJ plastic :

Plastic component of the strain energy release rate

ΔJPSC :

Physically small crack strain energy release rate

ΔJ total :

Total strain energy release rate; the sum of the elastic and plastic components

K max :

Maximum stress intensity factor (per cycle)

K norm :

Normalized stress intensity factor

ΔK I :

Mode I stress intensity amplitude

ΔK app :

Applied stress intensity amplitude

ΔK eff-ACR :

Effective, ACR-corrected stress intensity amplitude

ΔK MSC :

Microstructurally small crack stress intensity amplitude

ΔK plastic :

Plasticity-induced stress intensity amplitude

ΔK PSC :

Physically small crack stress intensity amplitude

m :

Barrier sensitivity exponent

N :

Number of secondary dendrite arms per dendritic cell

N L :

Linear density of interdendritic particles

N c.p./cell :

Number of colony particles per cell

N c.p./junction :

Number of colony particles per junction

N i.p./cell :

Number of interdendritic particles per cell

N junction/cell :

Number of junctions per cell

N total/cell :

Total number of particles per cell

n :

Dimensionless ratio of crack length to crack length plus the distance from the crack tip to the next barrier (equal to a/c)

n ACR :

Kmax sensitivity exponent

\( n_{c}^{i} \) :

The critical value of n in the current zone at which slip initiates in the subsequent zone

\( n_{s}^{i} \) :

The critical value of n in the subsequent zone at which slip initiates

R :

Stress ratio

r :

Average radius of secondary phase particle

S :

Stress ahead of the plastic zone

s :

Coordinate system defined along Γ

T :

Traction vector along the outward normal of Γ

u :

Displacement vector

W :

Strain energy density

x :

Cartesian coordinate axis with origin at the crack tip, parallel to crack surfaces

y :

Cartesian coordinate axis with origin at the crack tip, perpendicular to crack surfaces

α :

The ratio of microstructurally small to physically small crack growth rate, including the barrier magnitude effect

Γ:

A contour surrounding the crack tip, evaluated counter-clockwise

δ cl :

Crack mouth opening displacement at the minimum load

δ i :

Initial crack mouth opening displacement prior to initiation from a starter notch

δ nc :

Crack mouth opening displacement at the opening load

Δδ elastic :

Elastic component of the crack tip opening displacement

Δδ plastic :

Plastic component of the crack tip opening displacement

Δδ total :

Total crack tip opening displacement; the sum of the elastic and plastic components

ζ :

Dimensionless coordinate system = x/c

\( \zeta_{0}^{i} \) :

The value of ζ at which slip initiates in zone i

κ :

Constant = 1 for screw dislocations and = 1 − ν for edge dislocations

ν :

Poisson’s ratio

Δσ app :

Far-field applied stress amplitude

σ ys :

Matrix yield strength

τ :

Resolved shear stress on the plane of crack growth

φ :

Plastic displacement along the slip band

φ MSC :

Plastic displacement along the slip band attributed to the microstructurally small crack

φ PSC :

Plastic displacement along the slip band attributed to the physically small crack

References

  1. D.A. Lados, D. Apelian, and J.K. Donald: Acta Mater, 2006, vol. 54, pp. 1475–86.

    Article  Google Scholar 

  2. J.M. Boileau: Ph.D. dissertation, Wayne State University, 2000.

  3. D.A. Lados, D. Apelian, and J.F. Major: Metall Mater Trans A, 2006 vol. 37, pp. 2405–18.

    Article  Google Scholar 

  4. S. Suresh, G.F. Zamiski, and R.O. Ritchie: Metall Mater Trans A, 1981, vol.12, pp. 1435-1443.

    Article  Google Scholar 

  5. D.A. Lados, D. Apelian, P. Paris, and J.K. Donald: Int J Fatigue, 2005, vol. 27, pp. 1463-72.

    Article  Google Scholar 

  6. J.C. Newman and W. Elber: ASTM STP 982, Mechanics of fatigue crack closure, Philadelphia, PA, ASTM, 1988.

    Book  Google Scholar 

  7. E. Zaiken and R.O. Ritchie: Metall Trans A – Phys Metall Mater Sci, 1985, vol. 16, pp. 1467-77.

    Article  Google Scholar 

  8. B.A. Bilby, A.H. Cottrell, and K.H. Swinden: Proc R Soc Lond A, 1963, vol. 272, pp. 304-14.

    Article  Google Scholar 

  9. J. Weertman: Int J Fract Mech, 1966, vol. 2, pp. 460-7.

    Article  Google Scholar 

  10. A. Shyam, J.E. Allison, and J.W. Jones: Acta Mater, 2005, vol. 53, pp. 1499-1509.

    Article  Google Scholar 

  11. A. Navarro, E.R. Rios (1992) Proc. R. Soc. Lond. A. 437:375-90.

    Article  Google Scholar 

  12. W. Schaef and M. Marx: Acta Mater, 2012, vol. 60, pp. 2425-36.

    Article  Google Scholar 

  13. T. Zhai, A.J. Wilkinson, and J.W. Martin: Acta Mater, 2000, vol. 48, pp. 4917-27.

    Article  Google Scholar 

  14. A.G. Gavras: Ph.D. Dissertation, Worcester Polytechnic Institute, 2012.

  15. A.G. Spangenberger, D.A. Lados, M. Coleman, S. Birosca, and M. Hardy: Int J Fatigue, 2016, vol. 97, pp. 202-13.

    Article  Google Scholar 

  16. ASTM Standard E647, 2013e1, ASTM International, West Conshohocken, PA, 2003.

  17. J.K. Donald: Mechanics of Fatigue Crack Closure, Philadelphia, PA, ASTM, 1988, pp. 222-9.

    Book  Google Scholar 

  18. J.R. Rice: J Appl Mech, 1968, vol. 35, pp. 379-86.

    Article  Google Scholar 

  19. M. Yoda: Int J Fracture, 1980, vol. 16, pp. 175-8.

    Article  Google Scholar 

  20. T.L. Anderson (2000) Fracture mechanics fundamentals and applications, second edition. CRC Press LLC, Boca Raton, pp. 117-22.

    Google Scholar 

  21. J.W. Hutchinson: J Mech Phys Solids, 1968, vol. 16, pp. 13-31.

    Article  Google Scholar 

  22. H. Li and F. Ebrahimi: Mater Sci Eng A, 2003, vol. 347, pp. 93-101.

    Article  Google Scholar 

  23. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh: Acta Mater, 2005, vol. 53, pp. 2169-79.

    Article  Google Scholar 

  24. M.F. Ashby and D.R.H. Jones: Engineering materials: an introduction to their properties and applications, Pergamon, Oxford, 1980, pp. 71-81.

    Google Scholar 

  25. S. Taira, K. Tanaka, and Y. Nakai: Mech Res Comm, 1978, vol. 5, pp. 375-81.

    Article  Google Scholar 

  26. A. Navarro and E.R. Rios: Fatigue Fract Engng Mater Struct, 1987, vol. 10, pp. 169-86.

    Article  Google Scholar 

  27. E.R. Rios, X.J. Xin, and A. Navarro: R Soc Lond A, 1994, vol. 447, pp. 111-34.

    Article  Google Scholar 

  28. S. Ghosh, Z. Nowak, and K. Lee: Acta Metall, 1996, vol. 45, pp. 2215-34.

    Google Scholar 

  29. C. Corti: Int Metall Rev, 1974, vol. 19, pp. 77-88.

    Article  Google Scholar 

  30. F. Schäfer, L. Weiter, M. Marx, and C. Motz: Philos Mag, 2016, vol. 96, pp. 32-34.

    Article  Google Scholar 

  31. D. Wilson, Z. Zheng, and F.P.E. Dunne: J Mech Phys Solids, 2018, vol. 121, pp. 147-174.

    Article  Google Scholar 

  32. W. Wen and T. Zhai: Metall Trans A, 2012, vol. 43A, pp. 2012-2743.

    Google Scholar 

  33. G. Marsaglia and W.W. Tsang: J Stat Soft, 2000, vol. 5, pp. 1-7.

    Article  Google Scholar 

  34. W.A. Bailey: Foundry, 1965, vol. 95, pp. 96–101

    Google Scholar 

  35. J.F. Major: Trans Am Foundry Soc, 1998, vol. 102, pp. 901-906.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (Grant Number 1151588) and the members of the Integrative Materials Design Center (iMdc) at Worcester Polytechnic Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony G. Spangenberger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 5, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spangenberger, A.G., Lados, D.A. A Novel Physics-Based Predictive Model for Small Fatigue Crack Growth with Microstructural Sensitivity in Cast Aluminum Alloys. Metall Mater Trans A 50, 4364–4377 (2019). https://doi.org/10.1007/s11661-019-05349-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05349-z

Navigation