Skip to main content

Interstitial-Free Bake Hardening Realized by Epsilon Martensite Reverse Transformation

Abstract

By investigating a metastable high-entropy alloy, we report a latent strengthening mechanism that is associated with the thermally-induced epsilon-martensite-to-austenite reverse transformation. We show this reversion-assisted hardening effect can be achieved in the same time-scale and temperature range as conventional bake-hardening treatment, but leads to both improved strength and cumulative ductility. Key mechanisms are discussed considering transformation kinetics, kinematics, strengthening and ductilization modules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 213–8.

    Article  Google Scholar 

  3. S. Antonov, M. Detrois, and S. Tin: Metall. Mater. Trans. A, 2018, vol. 49, pp. 305–20.

    Article  Google Scholar 

  4. F. He, Z. Wang, Q. Wu, J. Li, J. Wang, and C.T. Liu: Scr. Mater., 2017, vol. 126, pp. 15–9.

    Article  Google Scholar 

  5. C. Varvenne, A. Luque, and W.A. Curtin: Acta Mater., 2016, vol. 118, pp. 164–76.

    Article  Google Scholar 

  6. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, and Z. Lu: Nature, 2018, vol. 563, pp. 546–50.

    Article  Google Scholar 

  7. H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Kormann, and D. Raabe: Entropy, 2016, vol. 18, pp. 1–9.

    Article  Google Scholar 

  8. S. Wei, F. He, and C.C. Tasan: J. Mater. Res., 2018, vol. 33, pp. 2924–37.

    Article  Google Scholar 

  9. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Nature, 2016, vol. 534, pp. 227–30.

    Article  Google Scholar 

  10. H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, and Z. Lu: Adv. Mater., 2017, vol. 29, pp. 1–7.

    Google Scholar 

  11. Y. Ikeda, F. Körmann, I. Tanaka, and J. Neugebauer: Entropy, 2018, vol. 20, p. 655.

    Article  Google Scholar 

  12. S. Wei, J. Kim, and C.C. Tasan: Acta Mater., 2019, vol. 168, pp. 76–86.

    Article  Google Scholar 

  13. S.S. Nene, M. Frank, K. Liu, R.S. Mishra, B.A. McWilliams, and K.C. Cho: Sci. Rep., 2018, vol. 8, pp. 1–8.

    Article  Google Scholar 

  14. D. Wei, X. Li, W. Heng, Y. Koizumi, F. He, W.-M. Choi, B.-J. Lee, H.S. Kim, H. Kato, and A. Chiba: Mater. Res. Lett., 2018, vol. 7, pp. 82–8.

    Article  Google Scholar 

  15. Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31, pp. 355–60.

    Article  Google Scholar 

  16. A. Chakraborty, M. Adhikary, T. Venugopalan, V. Singh, T. Nanda, and B.R. Kumar: Mater. Sci. Eng. A, 2016, vol. 676, pp. 463–73.

    Article  Google Scholar 

  17. Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato: Metall. Mater. Trans. A., 2014, vol. 45, pp. 5906–13.

    Article  Google Scholar 

  18. W. Pantleon: Scr. Mater., 2008, vol. 58, pp. 994–7.

    Article  Google Scholar 

  19. R.E. Reed and A.S. Gijilec: Metall. Trans. A, 1975, vol. 6, pp. 461–6.

    Article  Google Scholar 

  20. D. Wei, A. Anniyaer, Y. Koizumi, K. Aoyagi, M. Nagasako, H. Kato, and A. Chiba: Addit. Manuf., 2019, vol. 28, pp. 215–27.

    Article  Google Scholar 

  21. K. Ueki, K. Ueda, M. Nakai, T. Nakano, and T. Narushima: Metall. Mater. Trans. A, 2018, vol. 49, pp. 2393–404.

    Article  Google Scholar 

  22. Y. Lü, B. Hutchinson, D.A. Molodov, and G. Gottstein: Acta Mater., 2010, vol. 58, pp. 3079–90.

    Article  Google Scholar 

  23. A. Kisko, A.S. Hamada, J. Talonen, D. Porter, and L.P. Karjalainen: Mater. Sci. Eng. A, 2016, vol. 657, pp. 359–70.

    Article  Google Scholar 

  24. J. Han and Y.K. Lee: Acta Mater., 2014, vol. 67, pp. 354–61.

    Article  Google Scholar 

  25. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897–904.

    Google Scholar 

  26. J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–8.

    Article  Google Scholar 

  27. S. Kajiwara and T. Kikuchi: Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., 1983, vol. 48, pp. 509–26.

  28. P.M. Anderson, J.P. Hirth, and J. Lothe: Theory of Dislocations 4th Edition, 2017.

  29. S. Ogata, J. Li, and S. Yip: Phys. Rev. B, 2005, vol. 71, pp. 1–11.

    Article  Google Scholar 

  30. V. Vítek: Philos. Mag., 1968, vol. 18, pp. 773–86.

    Article  Google Scholar 

Download references

The authors thank Ms. Geetha Berera for extensive support on the DSC measurement. Dr. Hyunseok Oh and Ms. Yuntong Zhu are also acknowledged for fruitful discussion and important inputs. Shaolou Wei would like to express his gratitude to Prof. Ju Li (Massachusetts Institute of Technology, USA) for valuable suggestions on deformation energy landscape.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemal Cem Tasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 26, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 758 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Jiang, M. & Tasan, C.C. Interstitial-Free Bake Hardening Realized by Epsilon Martensite Reverse Transformation. Metall Mater Trans A 50, 3985–3991 (2019). https://doi.org/10.1007/s11661-019-05344-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05344-4