Skip to main content
Log in

Quenching and Partitioning of Plate Steels: Partitioning Design Methodology

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Quenching and partitioning (Q&P), a new heat treatment concept to develop high-strength martensitic microstructures with retained austenite (RA), has been implemented industrially to make sheet products. This process is also of interest for thicker plate products, to employ transformation-induced plasticity to enhance toughness and/or wear resistance. The applicability of the Q&P process to plate steel is explored considering through-thickness thermal profiles and associated microstructural gradients. Design methodologies are developed for both the quenching and the partitioning steps of plate processing, coupling thermal models with microstructural design concepts. The design methodologies are experimentally validated using a 0.4 wt pct C 300 M alloy through dilatometry simulations of plate Q&P processing, according to numerically simulated profiles. Q&P microstructures were successfully obtained through the thickness of a simulated 18-mm plate, and attractive RA fractions were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1 A. J. Clarke, J. G. Speer, M. K. Miller, R. E. Hackenberg, D. V. Edmonds, D. K. Matlock, F. C. Rizzo, K. D. Clarke, and E. De Moor, Acta Materialia, 2008, vol. 56, no. 1, pp. 16–22.

    CAS  Google Scholar 

  2. 2 D. K. Matlock and J. G. Speer, Materials and Manufacturing Processes, 2010, vol. 25, no. 1042–6914, pp. 7–13.

    CAS  Google Scholar 

  3. L. Wang and W. Feng: Advanced Steels: The Recent Scenario in Steel Science and Technology, W. Yuqing, H. Dong, and G. Yong, eds., Springer, Berlin, 2011, pp. 67–73.

  4. T. Liu, M.T. Kiser, and T.E. Clements: Proceedings of 2011 International Symposium on the Recent Developments in Plate Steels, AIST, 2011, pp. 71–80.

  5. R. Youngblood: M.S. thesis, Colorado School of Mines, Golden, CO, 2018.

  6. 6 S. W. Lee and H. C. Lee, Metallurgical Transactions, 1993, vol. 24, no. 6, pp. 1333–1343.

    Google Scholar 

  7. 7 S. C. Hong, C. J. Ahn, S. Y. Nam, S. J. Kim, C. H. Yang, J. G. Speer, and D. K. Matlock, Metals and Materials International, 2007, vol. 13, no. 6, pp. 439–445.

    CAS  Google Scholar 

  8. 8 B. C. De Cooman and J. G. Speer: Fundamentals of Steel Product Physical Metallurgy, Warrendale, PA, 2011.

    Google Scholar 

  9. 9 J. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, Acta Materialia, 2003, vol. 51, no. 9, pp. 2611–2622.

    CAS  Google Scholar 

  10. 10 D. K. Matlock, V. E. Brautigam, and J. G. Speer, Materials Science Forum, 2003, vol. 426–4, pp. 1089–1094.

    Google Scholar 

  11. A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds, and K. He: Minerals Metals Materials Society, 2003, 172–174, pp. 99–108.

    Google Scholar 

  12. 12 D. B. Futch, G. A. Thomas, J. G. Speer, and K. O. Findley, Iron Steel Technol., 2012, December 2012, p. 101–106.

    Google Scholar 

  13. J.G. Speer, A.L. Araujo, K. Matlock, E. De Moor, and J. Speer, Materials Science Forum, 2017, vol. 879, pp. 1834–40.

    Google Scholar 

  14. 14 M. J. Kähkönen, E. De Moor, J. G. Speer, and G. Thomas, SAE Int. J. Mater. Manuf., 2003, vol. 8, pp. 419–424.

    Google Scholar 

  15. 15 M. J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W. G. Sloof, and J. Sietsma, Acta Materialia, 2011, vol. 59, no. 15, pp. 6059–6068.

    CAS  Google Scholar 

  16. 16 D. De Knijf, E. P. Da Silva, C. Föjer, and R. Petrov: Proc. Mater. Sci. Technol., vol. 31, no. 7, 2015, pp. 817–828.

    Google Scholar 

  17. 17 J. G. Speer, E. De Moor, A. J. Clarke, and E. De Moor: Proc. Mater. Sci. Technol., vol. 31, no. 1, 2015, pp. 3–9.

    CAS  Google Scholar 

  18. 18 A. J. Clarke, J. G. Speer, D. K. Matlock, F. C. Rizzo, D. V. Edmonds, and M. J. Santofimia, Scripta Materialia, 2009, vol. 61, no. 2, pp. 149–152.

    CAS  Google Scholar 

  19. W. Wang, H. Wang, S. Liu, and A. Yang: Proceedings of Pacific Rim International Conference on Advanced Materials and Processing (PRICM9), 2016, pp. 108–13.

  20. G.A. Thomas, J.G. Speer, and D.K. Matlock: International Conference on New Developments in Advanced High-Strength Sheet Steels, AIST, 2008, pp. 227–36.

  21. 21 X. D. Wang, Z. H. Guo, and Y. H. Rong, Materials Science and Engineering A, 2011, vol. 529, no. 1, pp. 35–40.

    CAS  Google Scholar 

  22. T.Y. Hsu and Z. Xu: Proceedings of Pacific Rim International Conference on Advanced Materials and Processing (PRICM6), 2007, pp. 2283–86.

  23. 23 H. Liu, X. Lu, X. Jin, H. Dong, and J. Shi, Scripta Materialia, 2011, vol. 64, no. 8, pp. 749–752.

    CAS  Google Scholar 

  24. 24 S. Zhou, K. Zhang, N. Chen, J. Gu, and Y. Rong, ISIJ International, 2011, vol. 51, no. 10, pp. 1688–1695.

    CAS  Google Scholar 

  25. 25 M. C. Somani, L. P. Karjalainen, D. A. Porter, and D. K. Misra, Materials Science Forum, 2012, vol. 706–709, pp. 2824–2829.

    Google Scholar 

  26. M.C. Somani, J.I. Hannula, A.J. Kaijalainen, D.K. Misra, and D.A. Porter: Proceedings of THERMEC, 2016, pp. 1819–27.

  27. A.J. Clarke: Ph.D. thesis, Colorado School of Mines, Golden, CO, 2006.

  28. 28 M. C. Somani, D. A. Porter, P. K. Karjalainen, and M. K. Devesh, International Journal of Metallurgical Engineering, 2013, vol. 2, no. 2, pp. 154–160.

    Google Scholar 

  29. 29 R. A. Stewart, J. G. Speer, B. G. Thomas, A. J. Clarke, and E. De Moor, Iron Steel Technol., 2017, December 2017, p. 78–87.

    Google Scholar 

  30. C. R. Brooks: Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels, ASM International, Materials Park, 1996.

    Google Scholar 

  31. G.E. Totten and M.A.H. Howes: Steel Heat Treatment Handbook, G.E. Totten and M.A.H. Howes, eds., Marcel Dekker, Inc., New York, 1997, pp. 185–97, 210–47.

  32. 32 T. L. Bergman and A. S. Lavine: Fundamentals of Heat and Mass Transfer, 7th ed. Hobokon, NJ: John Wiley & Sons, Inc., 2011.

    Google Scholar 

  33. 33 C. Li and B. G. Thomas, Metall. Mater. Trans. B, 2004, vol. 35, pp. 1151–1172.

    CAS  Google Scholar 

  34. 34 H. Sadiq, M. B. Wong, J. Tashan, R. Al-Mahaidi, and X. L. Zhao, Journal of Materials in Civil Engineering, 2013, vol. 25, no. 2, pp. 167–173.

    Google Scholar 

  35. K. Okamoto, A. Yoshie, and H. Nakao: Physical Metallurgy of Direct-Quenched Steels, Proceedings of TMS, 1992.

  36. 36 Y. Meng and B. G. Thomas, Metall. Mater. Trans. B, 2006, vol. 34, pp. 685–705.

    Google Scholar 

  37. 37 G. E. Totten and M. A. H. Howes: Steel Heat Treatment, 1st ed., New York: Marcel Dekker, Inc., 1997.

    Google Scholar 

  38. G. Thomas: M.S. thesis, Colorado School of Mines, Golden CO, 2009.

  39. 39 J. H. Hollomon and L. D. Jaffe: Transactions of AIME, 1945, vol. 162, pp. 223–249.

    Google Scholar 

  40. 40 G. Krauss: Steels Processing, Structure and Performance, Materials Park, OH: ASM International, 2005, p. 334.

    Google Scholar 

  41. 41 R. A. Grange, C. R. Hribal, and L. F. Porter, Metallurgical Transactions A, 1977, vol. 8A, no. 11, pp. 1775–1785.

    CAS  Google Scholar 

  42. J. Kahkonen: M.S. thesis, Colorado School of Mines, Golden, CO, 2016.

  43. A.L. Araújo: M.S. thesis, Colorado School of Mines, Golden, CO, 2016.

  44. C. Hensley: M.S. thesis, Colorado School of Mines, Golden, CO, 2016.

  45. 45 X. D. Tan, X. L. Yang, Y. B. Xu, Z. P. Hu, F. Peng, H. Zhang, Y. M. Yu, and D. Wu, Materials Science Forum, 2015, vol. 816, pp. 736–742.

    Google Scholar 

  46. F.L.H. Gerdemann, J.G. Speer, and D.K. Matlock: Proceedings of MS&T, 2004, pp. 439–49.

  47. A. Shutts: M.S. thesis, Colorado School of Mines, Golden, CO, 2006.

  48. 48 S. Yan and X. Liu, Adv. Mater. Res., 2015, vol. 1082, pp. 202–207.

    CAS  Google Scholar 

  49. 49 Y. Xu, X. Tan, X. Yang, Z. Hu, F. Peng, D. Wu, and G. Wang, Materials Science and Engineering A, 2014, vol. 607, pp. 149–160.

    Google Scholar 

  50. 50 T. Ohtani and H. Kunitake, The Sumitomo Search, 1969, vol. 2, pp. 18–21.

    Google Scholar 

  51. G. Krauss: Steels Processing, Structure, and Performance, ASM International, Materials Park, 2005, pp. 297–300.

    Google Scholar 

  52. ASTM E975-13. Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations, ASTM International, Materials Park, 2015.

    Google Scholar 

  53. ASTM E975-13. Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation 1. ASTM International, Materials Park, 2013.

    Google Scholar 

  54. B. D. Cullity and S. R. Stock: Elements of X-ray Diffraction, 3rd ed. Prentice Hall, Upper Saddle River, 2001.

    Google Scholar 

  55. E. De Moor, C. Föjer, J. Penning, A. J. Clarke, and J. G. Speer, Phys. Rev. B, 2010, vol. 82, no. 10, pp. 104210–5.

    Google Scholar 

  56. G.A. Thomas: Ph.D. thesis, Colorado School of Mines, Golden, CO, 2012.

  57. 57 M. J. Santofimia, J. G. Speer, A. J. Clarke, L. Zhao, and J. Sietsma, Acta Materialia, 2009, vol. 57, no. 15, pp. 4548–4557.

    CAS  Google Scholar 

  58. R. Steiner: ASM Handbook, Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th ed., ASM International, Materials Park, 1990.

    Google Scholar 

  59. F. Gerdemann: M.S. thesis, Colorado School of Mines, Golden, CO, 2004.

Download references

Acknowledgments

The sponsors of the Advanced Steel Processing and Products Research Center at Colorado School of Mines are gratefully acknowledged. Dr. E.B. Damm and Timken Steel are gratefully acknowledged for providing the experimental steel. Ana Araujo and AK Steel are gratefully acknowledged for contributions to the characterization portion of this work, including XRD and SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Stewart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 23, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, R.A., Speer, J.G., Thomas, B.G. et al. Quenching and Partitioning of Plate Steels: Partitioning Design Methodology. Metall Mater Trans A 50, 4701–4713 (2019). https://doi.org/10.1007/s11661-019-05337-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05337-3

Navigation