Skip to main content
Log in

Effect of PWHT Larson–Miller Parameter on Mechanical Properties and Microstructure of Line Pipe Microalloyed Steel Joints

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, the effects of the postweld heat treatment (PWHT) on grain size and mechanical properties of X52 microalloyed steel joints have been investigated. The joints were welded by high-frequency induction welding (HFIW), and heat-treated at various temperatures and times. Then, the mechanical and microstructural evaluations were done on the heat-treated samples. To study the cumulative effects of PWHT time and temperature, the Larson–Miller parameter (LMP) of all the heat treatment cycles was calculated. Finally, the effects of LMP on the grain size and mechanical properties of the samples were studied. According to the findings, the grain size, toughness, strength and hardness show completely meaningful relationships with the LMP of PWHT for the HFIW welded joints. To achieve high impact energies and ductile fracturing, there was an optimum time and temperature condition for the PWHT, and it was obtained for the LMP range of 23,300 to 25,300.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ji-quan Sun, Hui Dai and Yong-chun Zhang, Materials & Design 2011, vol. 32, pp. 1612-1616.

    Article  Google Scholar 

  2. Dong-Su Bae, Chi-Eun Sung, Hyun-Ju Bang, Sang-Pill Lee, Jin-Kyung Lee, In-Soo Son, Young-Rae Cho, Un-Bong Baek and Seung-Hoon Nahm, Metals and Materials International 2014, vol. 20, pp. 653-658.

    Article  Google Scholar 

  3. IS Bott, LFG De Souza, JCG Teixeira and PR Rios, Metallurgical and Materials Transactions A 2005, vol. 36A, pp. 443-454.

    Article  Google Scholar 

  4. Baotong Lu, Jing-Li Luo and Douglas G. Ivey, Metallurgical and Materials Transactions A 2010, vol. 41A, pp. 2538-2547.

    Google Scholar 

  5. Khalid Ali Babakri, Journal of Materials Processing Technology 2010, vol. 210, pp. 2171-2177.

    Article  Google Scholar 

  6. H.N. Udall Chairman: in Welding Handbook, American Welding Society, Miami, 1997, pp 652–62.

  7. Choong-Myeong Kim and Jung-Kyu Kim, Met. Mater. Int. 2009, vol. 15, pp. 141-148.

    Article  Google Scholar 

  8. M. Çöl and M. Yılmaz, Materials & Design 2006, vol. 27, pp. 507-512.

    Article  Google Scholar 

  9. Choong-Myeong Kim and Jung-Kyu Kim, Journal of Materials Processing Technology 2009, vol. 209, pp. 838-846.

    Article  Google Scholar 

  10. DW. Rathod, RK. RajSingh, S. Pandey, S. Aravindan and P.K. Singh, Materials Science and Engineering: A 2017, vol. 702, pp. 289-300.

    Article  Google Scholar 

  11. P. Yan, Ö E. Güngör, P. Thibaux, M. Liebeherr and H. K. D. H. Bhadeshia, Materials Science and Engineering: A 2011, vol. 528, pp. 8492-8499.

    Article  Google Scholar 

  12. P. Yan, Ö E. Guüngör, P. Thibaux and H. K. D. H. Bhadeshia, Science and Technology of Welding and Joining 2010, vol. 15, pp. 137-141.

    Article  Google Scholar 

  13. K. M. Deen, A. Farooq, I. H. Khan, C. I. Haque, A. Ali, M. Kamran and A. N. Malik, Materials at High Temperatures 2013, vol. 30, pp. 140-144.

    Article  Google Scholar 

  14. Jia Huang, Xiaoguang Yang, Duoqi Shi, Huichen Yu, Chengli Dong and Xiaoan Hu, Computational Materials Science 2014, vol. 89, pp. 65-74.

    Article  Google Scholar 

  15. W-G. Kim, J-Y. Park, I.M.W. Ekaputra, S-J. Kim, J. Jang, Materials at High Temperatures 2014, vol. 31, pp. 249-257.

    Article  Google Scholar 

  16. Woo-Gon Kim, Jae-Young Park, Seon-Jin Kim and Jinsung Jang, Materials & Design 2013, vol. 51, pp. 1045-1051.

    Article  Google Scholar 

  17. V. Knežević, J. Balun, G. Sauthoff, G. Inden and A. Schneider, Materials Science and Engineering: A 2008, vol. 477, pp. 334-343.

    Article  Google Scholar 

  18. YoungMin Lee, SookIn Kwun and YoungHoon Chung, Metals and Materials International 2014, vol. 20, pp. 233-241.

    Article  Google Scholar 

  19. RW Hertzberg, RP Vinci and JL. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York (2012).

    Google Scholar 

  20. Lauralice Canale, Xin Yao, Jianfeng Gu and George Totten: A historical overview of steel tempering parameters. (2008).

    Google Scholar 

  21. VI Gorynin, S YuKondratev and MI Olenin, Met. Sci. Heat Treat., 2014, vol. 55, pp. 533-539.

    Article  Google Scholar 

  22. Corinne Chovet and Jean-Paul Schmitt, Welding in the World 2011, vol. 55, pp. 31-38.

    Article  Google Scholar 

  23. A. Fuji, Y. Horiuchi and K. Yamamoto, Science and Technology of Welding and Joining 2005, vol. 10, pp. 287-294.

    Article  Google Scholar 

  24. Anna Medvedeva, Jens Bergström, Staffan Gunnarsson and Pavel Krakhmalev, Materials Science and Engineering: A 2011, vol. 528, pp. 1773-1779.

    Article  Google Scholar 

  25. A. Ghatak and PS Robi, Trans. Indian Inst. Met., 2016, vol. 69, pp. 579-583.

    Article  Google Scholar 

  26. Vigantas Kumšlytis, Materials Science (MEDŽIAGOTYRA) 2007, vol. 13, pp. 123-126.

    Google Scholar 

  27. Manabu Tamura, Fujio Abe, Kiyoyuki Shiba, Hideo Sakasegawa and Hiroyasu Tanigawa, Metallurgical and Materials Transactions A 2013, vol. 44, pp. 2645-2661.

    Article  Google Scholar 

  28. ASM Handbook Committee: Heat Treating. ASM International, Materials Park, 1991.

    Google Scholar 

  29. American Petroleum Institute, API Specification 5L. API publications, 2012

  30. Dinesh W. Rathod, John A. Francis, Matthew J. Roy, Gideon Obasi and Neil M. Irvine, Materials Science and Engineering: A 2017, vol. 707, pp. 399-411.

    Article  Google Scholar 

  31. ASTM International: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, Materials Park, 2016.

    Google Scholar 

  32. ASTM International, Standard Test Methods for Determining Average Grain Size, ASTM International, Materials Park, 2013.

    Google Scholar 

  33. JE Ramirez, S. Mishael and R Shockley, Weld. J., 2005, vol. 84, pp. 113-123.

    Google Scholar 

  34. M Esmailian, Iranian Journal of Materials Science & Engineering 2010, vol. 7, pp. 7-14.

    Google Scholar 

  35. K. G. Samuel and S. K. Ray, International Journal of Pressure Vessels and Piping 2006, vol. 83, pp. 405-408.

    Article  Google Scholar 

  36. Qilong Yong Jianchun Cao, Qingyou Liu, Xinjun Sun, Journal of Materials Science 2007, vol. 42, pp. 10080-10084.

    Article  Google Scholar 

  37. YQ Wang, SJ Clark, V Janik, RK Heenan, D. AlbaVenero, K Yan, DG McCartney, S Sridhar and PD Lee, Acta Mater., 2018, vol. 145, pp. 84-96.

    Article  Google Scholar 

  38. Amaia Iza-Mendia, Denis Jorge-Badiola and Isabel Gutiérrez, Metallurgical and Materials Transactions A 2017, vol. 48, pp. 2943-2948.

    Article  Google Scholar 

  39. Hojun Gwon, Jin-Kyung Kim, Sunmi Shin, Lawrence Cho and Bruno C. De Cooman, Materials Science and Engineering: A 2017, vol. 696, pp. 416-428.

    Article  Google Scholar 

  40. Zhengwu Peng, Liejun Li, Jixiang Gao and Xiangdong Huo, Materials Science and Engineering: A 2016, vol. 657, pp. 413-421.

    Article  Google Scholar 

  41. K. Wang, In Mechanical Engineering, Canterbury, Christchurch, 2003, pp 109-111.

    Google Scholar 

Download references

Acknowledgments

Many thanks to Safa Rolling & Pipe Mills Company for providing all the materials and equipment used in this study. My appreciations and special thanks go to Mr. Rostami, Managing Director, and Mr. Kamrani, Quality Control Manager of ERW line, for their support during the project. In addition, my gratitude goes to Dr. Mirbagheri, Professor and scientific committee member of the Department of Mining and Metallurgical Engineering of Amirkabir University of Technology for his helpful guidance in all stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Ehsan Mirsalehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavousi Sisi, A., Mirsalehi, S.E. Effect of PWHT Larson–Miller Parameter on Mechanical Properties and Microstructure of Line Pipe Microalloyed Steel Joints. Metall Mater Trans A 50, 4141–4147 (2019). https://doi.org/10.1007/s11661-019-05327-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05327-5

Navigation