Skip to main content

Advertisement

Log in

Effect of Build Orientation on Mechanical Properties and Microstructure of Ti-6Al-4V Manufactured by Selective Laser Melting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-6Al-4V with five build orientations relative to the substrate (0, 30, 45, 60, and 90 deg) prepared by selective laser melting (SLM) process was studied. Four distinct conditions were considered: as-built without any treatment, heat treatment below the β-transus, hot isostatic pressing, and heat treatment above the β-transus. The effect of build orientation on the mechanical properties and microstructure of SLM Ti-6Al-4V was comprehensively analyzed from the aspects of residual stress, pore distribution, texture, and microstructure. The results revealed that the residual stress, pore distribution, and texture were the main contributors to the differences in mechanical properties among samples with different build orientations. The tensile strength of samples in the as-built state reaches a maximum and minimum at 45 deg (1134 MPa) and 90 deg (1004 MPa), respectively. The elongation of SLM Ti-6Al-4V material reaches a maximum of 10 pct for the 0 deg sample because of its lower porosity and a minimum of 3.5 pct for the 45 deg sample due to its high porosity. The 0 deg sample in the as-built state exhibits the longest fatigue life because of its lower porosity and adequate strength, and the 90 deg sample exhibits the shortest fatigue life because of its lowest static strength caused by high residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King: Acta Mater, 2016, vol. 108, pp. 36–45.

    Article  Google Scholar 

  2. D. Herog, V. Seyda, W. Wycisk, C. Emmelmann: Acta Mater, 2016, vol. 117, pp. 371–92.

    Article  Google Scholar 

  3. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock: Nature, 2017, vol. 549, pp. 365–69.

    Article  Google Scholar 

  4. B. Vrancken, L. Thijs, J-P. Kruth, J.V. Humbeeck: J. Alloys Compd, 2012, vol. 541, pp. 177–85.

    Article  Google Scholar 

  5. M. Simonelli, Y.Y. Tse, C. Tuck: Mater. Sci. Eng. A, 2014, vol. 616, pp. 1–11.

    Article  Google Scholar 

  6. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, Q. Ma: Acta Mater, 2017, vol. 85, pp. 74–84.

    Article  Google Scholar 

  7. W. Xu, E.W. Lui, A. Pateras, Q. Ma, M. Brandt: Acta Mater, 2017, vol. 125, pp. 390–400.

    Article  Google Scholar 

  8. W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt, Q. Ma: JOM, 2015, vol. 67, pp. 668–73.

    Article  Google Scholar 

  9. H. Ali, L. Ma, H. Ghadbeigi, K. Mumtaz: Mater. Sci. Eng. A. 2017, vol. 695, pp. 211–20.

    Article  Google Scholar 

  10. T. Vilaro, C. Colin, J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3190–99.

    Article  Google Scholar 

  11. B.E. Carroll, T.A. Palmer, A.M. Beese: Acta Mater, 2015, vol. 87, pp. 309–20.

    Article  Google Scholar 

  12. J.X. Lu, L. Chang, J. Wang, L.J. Sang, S.K. Wu, Y.F. Zhang: Mater. Sci. Eng. A, 2018, vol. 712, pp. 199–205.

    Article  Google Scholar 

  13. C.L. Qiu, N.J.E. Adkins, M.M. Attallah: Mater. Sci. Eng. A, 2013, vol. 578, pp. 230–39.

    Article  Google Scholar 

  14. Y. Xie, M. Gao, F.D. Wang, C. Zhang, K.D. Hao, H.Z. Wang, X.Y. Zeng: Mater. Sci. Eng. A, 2018, vol. 709, pp. 265–69.

    Article  Google Scholar 

  15. M.M. Kirka, D.A. Greeley, C.Hawkins, R.R. Dehoff: Int. J. Fatigue, 2017, vol. 105, pp. 235–43.

    Article  Google Scholar 

  16. G. Nicoletto: Int. J. Fatigue, 2017, vol. 94, pp. 255–62.

    Article  Google Scholar 

  17. V. Cain, L. Thijs, J.V. Humbeeck: Addit. Manuf, 2015, vol. 5, pp. 68–76.

    Article  Google Scholar 

  18. B. Vrancken, V. Cain, R. Knutsen, J.V.Humbeeck: Scripta Mater, 2014, vol. 87, pp. 29–32.

    Article  Google Scholar 

  19. J.J. Yang, H.C. Yu, Z.M. Wang, X.Y. Zeng: Mater. Charact, 2017, vol. 127, pp. 137–45.

    Article  Google Scholar 

  20. D. Agius, K. Kourousis, C. Wallbrink: Mater. Sci. Eng. A, 2017, vol. 701, pp. 85–100.

    Article  Google Scholar 

  21. P. Edwards, M. Ramulu: Mater. Sci. Eng. A, 2014, vol. 598, pp. 327–37.

    Article  Google Scholar 

  22. L. Thijs, S. Montero, L. Maria, R. Wauthle, Q. Xie, J-P. Kruth, J. Van Humbeeck: Acta Mater, 2013, vol. 61, pp. 4657–68.

    Article  Google Scholar 

  23. S.F. Wen, S. Li, Q.S. Wei, C.Z. Yan, S. Zhang, Y.S. Shi: Mater. Process Tech, 2014, vol. 214, pp. 2660–67.

    Article  Google Scholar 

  24. M. Todai, T. Nakano, T.Q. Liu, H.Y. Yasuda, K.Hagihara, K. Cho, M. Ueda, M. Takeyama: Addit. Manuf, 2017, vol. 13, pp. 61–70.

    Article  Google Scholar 

  25. D.Y. Deng, J. Moverare, R.L. Peng, H. Söderberg: Mater. Sci. Eng. A, 2017, vol. 693, pp. 151–63.

    Article  Google Scholar 

  26. J.C. Fox, S.P. Moylan, B.M. Lane: Procedia CIRP, 2016, vol. 45, pp. 131–34.

    Article  Google Scholar 

  27. F. Calignano: Mater Design, 2014, vol. 64, pp. 203–13.

    Article  Google Scholar 

  28. G. Kasperovich, J. Hausmann: Mater. Process Tech, 2015, vol. 220, pp. 202–14.

    Article  Google Scholar 

  29. T. Ahmed, H. J. Rack: Mater. Sci. Eng. A, 1998, vol. 243, pp. 206–11.

    Article  Google Scholar 

  30. S. Leuders S, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A Richard, H.J. Maier: Int. J. Fatigue, 2013, vol. 48, pp. 300–07.

    Article  Google Scholar 

  31. E. Sallica-Leva, R. Caram, A.L. Jardini, J.B. Fogagnolo: Mech Behav Biomed, 2016, vol. 54, pp. 149–58.

    Article  Google Scholar 

  32. S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin: Acta Mater, 2011, vol. 59, pp. 4138–50.

    Article  Google Scholar 

  33. N. Stefansson, S.L. Semiatin, and D. Eylon: Metall. Mater. Trans. A, 2002,vol. 33, pp. 3527-34.

    Article  Google Scholar 

  34. P. Mercelis, J-P. Kruth: Rapid Prototyp, 2006, vol. 12, pp.254–65.

    Article  Google Scholar 

  35. P. Rangaswamy, M.L. Griffith, M.B. Prime, T.M. Holden, R.B Rogge, J.M. Edwards, R.J. Sebring: Mater. Sci. Eng. A, 2005, vol. 399, pp. 72–83.

    Article  Google Scholar 

  36. Salmi, E. Atzeni, L. Iuliano, M. Galati: Procedia CIRP, 2017, vol. 62, pp. 458–63.

    Article  Google Scholar 

  37. G. Vastola, Q.X. Pei, Y.W. Zhang: Addit. Manuf, 2018, vol. 22, pp. 817–22.

    Article  Google Scholar 

  38. D. Bäuerle: Laser Processing and Chemistry. Springer, Berlin Heidelberg, 2011, pp. 112–13.

    Book  Google Scholar 

  39. G.G. Gladush, I. Smurov: Physics of Laser Materials Processing: Theory and Experiment. Springer, Berlin Heidelberg, 2011, pp. 213–15.

    Book  Google Scholar 

  40. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, A.D. Rollett: Sci, 2019, vol. 363, pp. 849–52.

    Article  Google Scholar 

  41. H.J. Gong, K. Rafi,H.F. Gua, T. Starr, B. Stucker: Addit. Manuf, 2014, vol. 1–4, pp. 87–98.

    Article  Google Scholar 

  42. D. Bhattacharyya, G.B. Viswanathan, R. Denkenberger, D. Furrer, H.L. Fraser: Acta Mater, 2003, vol. 51, pp. 4679–91

    Article  Google Scholar 

  43. S. Suri , G.B. Viswanathan, T. Neeraj, T. Neeraj, D.H. Hou, M.J. Mills: Acta Mater, 1999, vol. 47, pp. 1019–34.

    Article  Google Scholar 

  44. S. Ankem, H. Margolin: Metall. Mater. Trans. A, 1983, vol. 14, pp. 500–03.

    Article  Google Scholar 

  45. T. Kehagias, P. Komninou, G.P. Dimitrakopulos, J.G. Antonopoulos, Th. Karakostas: Scripta Metall Mater, 1995, vol. 33, pp. 1883–88.

    Article  Google Scholar 

  46. A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, D.W. Seely: Mater. Sci. Eng. A, 2016, vol. 655, pp. 100–12.

    Article  Google Scholar 

  47. Wang Y N, Huang J C: Materials Chemistry and Physics, 2013, vol. 81, pp. 11–26.

    Article  Google Scholar 

  48. T. Mukherjee, W. Zhang, T. DebRoy: Comp. Mater. Sci, 2017, vol. 126, pp. 360–72.

    Article  Google Scholar 

  49. Habraken, A., G. Gilles, V. Tuninetti, L. Duchene, W. Hammami, L. Delannay: Identification and validation of CRSS values for Ti6Al4V alloy, Conference of the Balkan Network for the Animal Reproduction Biotechnology, 2013.

  50. N.E. Paton, J.C. Williams, G.P. Rauscher: Titanium Science and Technology, 1973, pp. 1049–69.

    Google Scholar 

  51. F. Bridier, P. Villechaise, J. Mendez: Acta Mater, 2005, vol. 53, pp. 555-67.

    Article  Google Scholar 

  52. J.S. Lecomte, M.J. Philippe, P. Klimanek: Mater. Sci. Eng. A, 1997, vol. 234-236, pp. 869-72.

    Article  Google Scholar 

  53. D. Banerjee, J.C. Williams: Acta Mater, 2013, vol. 61, pp. 844-79.

    Article  Google Scholar 

  54. P. Li, D.H. Warner, A. Fatemi, N. Phan: Int. J. Fatigue, 2016, vol. 85, pp. 130–43.

    Article  Google Scholar 

  55. S. Leuders, M. Vollmer, F. Brenne, T. Tröster, T. Niendorf: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3816–23.

    Article  Google Scholar 

  56. S. Leuders, T. Lieneke, S. Lammers, T. Tröster, T. Niendorf: Mater. Res, 2014, vol. 29, pp. 1911–19.

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51874038, 51374028) and Fundamental Research Funds for the Central Universities (FRF-AT-18-014). The authors express their deepest gratitude to the anonymous reviewers for their careful work and thoughtful suggestions that have helped improve this paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubin Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 27, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Chen, Y., Liu, T. et al. Effect of Build Orientation on Mechanical Properties and Microstructure of Ti-6Al-4V Manufactured by Selective Laser Melting. Metall Mater Trans A 50, 4388–4409 (2019). https://doi.org/10.1007/s11661-019-05322-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05322-w

Navigation