Skip to main content
Log in

Effects of Calcium on Strength and Microstructural Evolution of Extruded Alloys Based on Mg-3Al-1Zn-0.3Mn

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A family of alloys based on the Mg-Al-Zn-Ca-Mn system (Mg-3Al-1Zn-1Ca-0.3Mn, Mg-3Al-1.5Zn-0.5Ca-0.3Mn, and Mg-3Al-1Ca-0.3Mn, wt pct) was developed for extrusion. Their mechanical properties were evaluated by tensile testing at room temperature, and compared to those of the benchmark Mg-alloy Mg-3Al-1Zn-0.3Mn (AZ31). The microstructures of the extruded alloys were characterized in detail in order to reveal the effect of Ca on microstructural evolution, and consequently the alloy strength. The addition of Ca to the AZ31 stifles dynamic recrystallization and grain growth, with only ~30 pct recrystallization and a recrystallized grain size of ~480 nm. In contrast, the benchmark alloy is essentially completely recrystallized with an average grain size of ~2.3 μm. A high density of low-angle grain boundaries (LAGBs) and dislocations were observed in Ca-containing alloys, and were identified as a major factor in the observed strengthening. Such LAGBs form cellular subgrains predominantly along initial grain boundaries, or newly formed boundaries that are closely spaced (~ 600 nm) and nearly parallel to the extrusion direction. The subgrains have an ultrafine size of 100 to 400 nm, and difficult to convert to recrystallized grains. Solute segregation to grain boundaries was also observed. It is hypothesized that it is the Ca segregation to dislocation cores along LAGBs that decreases the dislocation mobility and stabilizes LAGBs, by thermodynamically decreasing the dislocation energy and/or kinetically imposing a solute drag effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T.M. Pollock, Science 2010, vol. 328, pp. 986-87.

    Article  Google Scholar 

  2. W.J. Joost and P.E. Krajewski, Scripta Mater 2017, vol. 128, pp. 107-12.

    Article  Google Scholar 

  3. M. Liu, Y. Guo, J. Wang, and M. Yergin, npj Mater. Degrad. 2018, vol. 2, p. 24.

    Article  Google Scholar 

  4. I.J. Polmear, D. StJohn, J.F. Nie and M. Qian, Light Alloys, 5th ed., Butterworth-Heinemann: Boston, 2017.

    Google Scholar 

  5. Z.R. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, and N. Birbilis, Int. Mater. Rev., 2018, pp. 1–36.

  6. T.B. Abbott, Corrosion 2015, vol. 71, pp. 120-27.

    Article  Google Scholar 

  7. Z. R. Zeng, Y. M. Zhu, R. L. Liu, S. W. Xu, C. H. J. Davies, J. F. Nie and N. Birbilis, Acta Mater 2018, vol. 160, pp. 97-108.

    Article  Google Scholar 

  8. Y. Kawamura, K. Hayashi, A. Inoue and T. Masumoto, Mater Trans 2001, vol. 42, pp. 1171-74.

    Google Scholar 

  9. T. Homma, N. Kunito and S. Kamado, Scripta Mater 2009, vol. 61, pp. 644-47.

    Article  Google Scholar 

  10. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, G.H. Fan and S. Kamado, Mater. Sci. Eng. A, 2015, vol. 643, pp. 137-41.

    Article  Google Scholar 

  11. Z.J. Yu, Y.D. Huang, X. Qiu, G.F. Wang, F.Z. Meng, N. Hort and J. Meng, Mater Sci Eng A 2015, vol. 622, pp. 121-30.

    Article  Google Scholar 

  12. C. Xu, M. Y. Zheng, S. W. Xu, K. Wu, E. D. Wang, S. Kamado, G. J. Wang and X. Y. Lv, Mater Sci Eng A 2012, vol. 547, pp. 93-98.

    Article  Google Scholar 

  13. J.F. Nie, Metall Mater Trans A 2012, vol. 43, pp. 3891-939.

    Article  Google Scholar 

  14. T. T. Sasaki, K. Yamamoto, T. Honma, S. Kamado and K. Hono, Scripta Mater 2008, vol. 59, pp. 1111-14.

    Article  Google Scholar 

  15. T. T. Sasaki, F. R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado and K. Hono, Acta Mater 2015, vol. 99, pp. 176-86.

    Article  Google Scholar 

  16. S.H. Park, J.G. Jung, Y.M. Kim and B.S. You, Mater Lett 2015, vol. 139, pp. 35-38.

    Article  Google Scholar 

  17. S. W. Xu, K. Oh-ishi, S. Kamado, F. Uchida, T. Homma and K. Hono, Scripta Mater 2011, vol. 65, pp. 269-72.

    Article  Google Scholar 

  18. H.C. Pan, G.W. Qin, Y.M. Huang, Y.P. Ren, X.C. Sha, X.D. Han, Z.Q. Liu, C.F. Li, X.L. Wu, H.W. Chen, C. He, L.J. Chai, Y.Z. Wang and J.F. Nie, Acta Mater., 2018, vol. 149, pp. 350-63.

    Article  Google Scholar 

  19. A.A. Nayeb-Hashemi and J.B. Clark: Phase Diagrams of Binary Magnesium Alloys. ASM International, Materials Park, OH, 1985.

    Google Scholar 

  20. Z. R. Zeng, Y. M. Zhu, S. W. Xu, M. Z. Bian, C. H. J. Davies, N. Birbilis and J. F. Nie, Acta Mater 2016, vol. 105, pp. 479-94.

    Article  Google Scholar 

  21. N. Stanford and M. Barnett, Mater Sci Eng A 2008, vol. 496, pp. 399-408.

    Article  Google Scholar 

  22. Y. Chino, T. Ueda, Y. Otomatsu, K. Sassa, X.S. Huang, K. Suzuki and M. Mabuchi, Mater Trans 2011, vol. 52, pp. 1477-82.

    Article  Google Scholar 

  23. M. Z. Bian, T. T. Sasaki, B. C. Suh, T. Nakata, S. Kamado and K. Hono, Scripta Mater 2017, vol. 138, pp. 151-55.

    Article  Google Scholar 

  24. Y. Chino, K. Sassa, X.S. Huang, K. Suzuki and M. Mabuchi, J Japan Insti Metal Mater 2011, vol. 75, pp. 35-41.

    Article  Google Scholar 

  25. J. Y. Lee, Y.S. Yun, B.C. Suh, N.J. Kim, W.T. Kim and D.H. Kim, J Alloy Compd 2014, vol. 589, pp. 240-46.

    Article  Google Scholar 

  26. M.Z. Bian, Z.R. Zeng, S.W. Xu, S.M. Zhu, Y.M. Zhu, C.H.J. Davies, N.Birbilis and J.F. Nie, Adv Eng Mater 2016, vol. 18, pp. 1763-69.

    Article  Google Scholar 

  27. B.P. Zhang, Y. Wang, L. Geng and C.X. Lu, Mater Sci Eng A 2012, vol. 539, pp. 56-60.

    Article  Google Scholar 

  28. V.M. Miller and T.M. Pollock, Metall Mater Trans A 2016, vol. 47A, pp. 1854-64.

    Article  Google Scholar 

  29. Z. R. Zeng, M. Z. Bian, S. W. Xu, C. H. J. Davies, N. Birbilis and J. F. Nie, Mater Sci Eng A 2016, vol. 674, pp. 459-71.

    Article  Google Scholar 

  30. T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T. T. Sasaki, L. Ma, K. Hono and S. Kamado, Acta Mater. 2017, vol. 130, pp. 261-70.

    Article  Google Scholar 

  31. T. Nakata, T. Mezaki, C. Xu, K. Oh-ishi, K. Shimizu, S. Hanaki and S. Kamado, J Alloy Compd 2015, vol. 648, pp. 428-37.

    Article  Google Scholar 

  32. G.C. Sneddon, P.W. Trimby and J.M. Cairney, Mater Sci Eng: R: 2016, vol. 110, pp. 1-12.

    Article  Google Scholar 

  33. P.W. Trimby, Y. Cao, Z.B. Chen, S. Han, K.J. Hemker, J.S. Lian, X.Z. Liao, P. Rottmann, S. Samudrala, J.L. Sun, J.T. Wang, J. Wheeler and J.M. Cairney, Acta Mater 2014, vol. 62, pp. 69-80.

    Article  Google Scholar 

  34. K. Lu, Nature Review Mater. 2016, vol. 1, p. 16019.

    Article  Google Scholar 

  35. M.F. Ashby, Phil Mag, 1970, vol. 21, pp. 399–424.

    Article  Google Scholar 

  36. Y.B. Chun and C.H.J. Davies, Metall Mater Trans A 2011, vol. 42A, pp. 4113-25.

    Article  Google Scholar 

  37. J.P. Hadorn, K.Hantzsche, S.B. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser and S.R. Agnew, Metall Mater Trans A 2016, vol. 47A, pp. 1854-64.

    Google Scholar 

  38. G. K. Williamson and R. E. Smallman, Phil Mag: A 1956, vol. 1, pp. 34-46.

    Article  Google Scholar 

  39. D. Balzar and H. Ledbetter, Advances in X-ray Analysis 1995, vol. 38.

  40. M. Wiessner, E. Gamsjäger, S.V.D. Zwaag and P. Angerer, Mater Sci Eng A 2017, vol. 682, pp. 117-25.

    Article  Google Scholar 

  41. I. C. Dragomir and T. Ungar, J Appl Crystallogr 2002, vol. 35, pp. 556-64.

    Article  Google Scholar 

  42. S.I Wright and M.M Nowell, Microsc Microanal 2006, vol. 12, pp. 72-84.

    Article  Google Scholar 

  43. C.Bettles and M.Barnett: Advances in wrought magnesium alloys: Fundamentals of processing, properties and applications. Elsevier, Amsterdam, 2012.

    Book  Google Scholar 

  44. S.I. Wright, M.M. Nowell and D.P. Field, Microsc Microanal, 2011, vol. 17, pp. 316-29.

    Article  Google Scholar 

  45. H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang and Q. Liu, Acta Mater. 2017, vol. 128, pp. 313-26.

    Article  Google Scholar 

  46. W. Yuan, S. K. Panigrahi, J. Q. Su and R. S. Mishra, Scripta Mater. 2011, vol. 65, pp. 994-97.

    Article  Google Scholar 

  47. Y. Wang and H. Choo, Acta Mater 2014, vol. 81, pp. 83-97.

    Article  Google Scholar 

  48. Y. N. Wang, C. I. Chang, C. J. Lee, H. K. Lin and J. C. Huang, Scripta Mater 2006, vol. 55, pp. 637-40.

    Article  Google Scholar 

  49. M. R. Barnett, Z. Keshavarz and X. Ma, Metall Mater Trans A 2006, vol. 37, pp. 2283-93.

    Article  Google Scholar 

  50. N. Hansen, Scripta Mater 2004, vol. 51, pp. 801-06.

    Article  Google Scholar 

  51. D. Kuhlmann-Wilsdorf, Mater Sci Eng A 1989, vol. 113, pp. 1-41.

    Article  Google Scholar 

  52. T.L. Huang, L.F. Shuai, A. Wakeel, G.L. Wu, N. Hansen and X.X. Huang, Acta Mater 2018, vol. 156, pp. 369-78.

    Article  Google Scholar 

  53. F. Naghdi, R. Mahmudi, J. Y. Kang and H. S. Kim, Philos Mag 2015, vol. 95, pp. 3452-66.

    Article  Google Scholar 

  54. S. Biswas, S.S. Dhinwal, and S. Suwas, Acta Mater. 2010, vol. 58, pp. 3247-61.

    Article  Google Scholar 

  55. A. G. Beer and M. R. Barnett, Metall Mater Trans A 2007, vol. 38, pp. 1856-67.

    Article  Google Scholar 

  56. J. C. Tan and M. J. Tan, Mater Sci Eng A 2003, vol. 339, pp. 124-32.

    Article  Google Scholar 

  57. X.Y. Yang, Z.S. Ji, H. Miura and T. Sakai, T Nonferr Metal Soc 2009, vol. 19, pp. 55-60.

    Article  Google Scholar 

  58. A. Galiyev, R. Kaibyshev and G. Gottstein, Acta Mater 2001, vol. 49, pp. 1199-207.

    Article  Google Scholar 

  59. D.K. Sun, C.P. Chang and P.W. Kao, Metall Mater Trans A 2010, vol. 41, pp. 1864-70.

    Article  Google Scholar 

  60. É. Martin and J.J. Jonas, Acta Mater 2010, vol. 58, pp. 4253-66.

    Article  Google Scholar 

  61. R. Kaibyshev, K. Shipilova, F. Musin and Y. Motohashi, Mater Sci Eng A 2005, vol. 396, pp. 341-51.

    Article  Google Scholar 

  62. F. J. Humphreys and M Hatherly: Recrystallisation and Related Annealing Phenomena. 2nd ed. Elsevier, Oxford, 2004.

    Google Scholar 

  63. K.D. Molodov, T. Al-Samman, D.A. Molodov and G.Gottstein, Acta Mater 2014, vol. 76, pp. 314-30.

    Article  Google Scholar 

  64. T. Al-Samman and G. Gottstein, Mater Sci Eng A 2008, vol. 490, pp. 411-20.

    Article  Google Scholar 

  65. T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein and S. Suwas, Acta Mater 2012, vol. 60, pp. 537-45.

    Article  Google Scholar 

  66. N. Stanford, G. Sha, J. H. Xia, S. P. Ringer and M. R. Barnett, Scripta Mater 2011, vol. 65, pp. 919-21.

    Article  Google Scholar 

  67. J.D Robson, Metall Mater Trans A 2014, vol. 45, pp. 3205-12.

    Article  Google Scholar 

  68. D. Griffiths, Mater Sci Tech 2014, vol. 31, pp. 10-24.

    Article  Google Scholar 

  69. S. W. Xu, S. Kamado and T. Honma, Scripta Mater 2010, vol. 63, pp. 293-96.

    Article  Google Scholar 

  70. G.T. Bae, J. H. Bae, D.H. Kang, H. Lee and N.J. Kim, Met Mater-int 2009, vol. 15, pp. 1-5.

    Article  Google Scholar 

  71. A. Suzuki, N. D. Saddock, J. W. Jones and T. M. Pollock, Acta Mater 2005, vol. 53, pp. 2823-34.

    Article  Google Scholar 

  72. N. Stanford and D. Atwell, Metall Mater Trans A 2013, vol. 44, pp. 4830-43.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Australian Research Council and Baoshan Iron & Steel Co., Ltd. We acknowledge the permission for the use of facilities at the Monash Center for Electron Microscopy. Special thanks to Enrico Seemann for the help with extrusion, and Lingyu Wang and Wuxiang Wu for helpful discussion in the XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. F. Nie or S. W. Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 4, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z.R., Zhu, Y.M., Nie, J.F. et al. Effects of Calcium on Strength and Microstructural Evolution of Extruded Alloys Based on Mg-3Al-1Zn-0.3Mn. Metall Mater Trans A 50, 4344–4363 (2019). https://doi.org/10.1007/s11661-019-05318-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05318-6

Navigation