Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 8, pp 3566–3577 | Cite as

Microstructure Engineering to Optimize Hardness and Conductivity in Electrolytic Tough Pitch Copper

  • N. Harshavardhana
  • M. P. Gururajan
  • Prita PantEmail author
Article
  • 46 Downloads

Abstract

Extensive investigations were carried out on the mechanical strength, electrical conductivity, and microstructure of commercially pure copper, which was rolled at room temperature to deformations less than 23 pct and subsequently heat treated at a range of temperatures less than 0.5Tm. For various reductions in samples thickness, we have identified the optimum heat treatment temperature that yields higher mechanical strength and electrical conductivity than the as-received sample. Specifically, with increasing deformation, the optimum heat treatment temperature decreases. We are able to correlate the properties with the microstructure which is composed of deformed grains that enhance strength and the relatively deformation-free grains that enhance electrical conductivity. More importantly, the optimum properties are achieved when the volume fraction of the relatively deformation-free grains are in the range 65 to 70 pct. We also show that the grain orientation spread obtained using electron back-scattered diffraction is ideal, in these studies, to distinguish between deformed and relatively deformation-free grains.

Notes

Acknowledgments

We thank Crompton Greaves Company for funding this project and for supplying the ETP copper samples and Dr. Janamejay Nemade, formerly of Crompton Greaves Company for useful discussions. EBSD studies were carried out at the National Facility of Texture and OIM—a DST-IRPHA facility.

References

  1. 1.
    Chapman: Copper Development Association Publication No. 122 and European Copper Institute Publication No. Cu0232, 1998.Google Scholar
  2. 2.
    J.R. Davis: ASM Speciality Handbook, ASM International, Materials Park, 2001.Google Scholar
  3. 3.
    C. Kittel, Introduction to Solid State Physics, Wiley, New York, 2004.Google Scholar
  4. 4.
    Y. Zhang, Y.S. Li, N.R. Tao, and K. Lu: Appl. Phys. Lett., 2007, vol. 91, pp. 10–3.Google Scholar
  5. 5.
    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–6.CrossRefGoogle Scholar
  6. 6.
    A. Habibi, M. Ketabchi, and M. Eskandarzadeh: J. Mater. Process. Technol., 2011, vol. 211, pp. 1085-90.CrossRefGoogle Scholar
  7. 7.
    A. Habibi and M. Ketabchi: Mater. Des., 2012, vol. 34, pp. 483-7.CrossRefGoogle Scholar
  8. 8.
    O.F. Higuera-Cobos and J.M. Cabrera: Mater. Sci. Eng. A, 2013, vol. 571, pp. 103-14.CrossRefGoogle Scholar
  9. 9.
    M. Kumar, W.E. King, A.J. Schwartz: ActaMater., 2000, vol. 48, pp. 2081-91.CrossRefGoogle Scholar
  10. 10.
    P. Zhang, S.X. Li, and Z.F. Zhang: Mater. Sci. Eng. A, 2011, vol. 529, pp. 62-73.CrossRefGoogle Scholar
  11. 11.
    D. Field, L. Bradford, M. Nowell, and T. Lillo: ActaMater., 2007, vol. 55, pp. 4233–41.CrossRefGoogle Scholar
  12. 12.
    J.G. Thompson: Natl. Bur. Stand., 1934, vol. 13, pp. 745–56.CrossRefGoogle Scholar
  13. 13.
    N. Hansen and T. Leffers: Rev. Phys. Appl., 1988, vol. 23, pp. 519–31.CrossRefGoogle Scholar
  14. 14.
    V.S. Ananthan, T. Leffers, and N. Hansen: Mater. Sci. Technol., 1991, vol. 7, pp. 1069–75.CrossRefGoogle Scholar
  15. 15.
    N. Hansen: Scr. Metall., 1992, vol. 27, pp. 1447–52.CrossRefGoogle Scholar
  16. 16.
    O.V Mishin and G. Gottstein: Philos. Mag. A, 1998, vol. 78, pp. 373–88.CrossRefGoogle Scholar
  17. 17.
    N. Hansen: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2917–35.CrossRefGoogle Scholar
  18. 18.
    T. Leffers, V.S. Ananthan, and H. Christoffersen: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 148–51.CrossRefGoogle Scholar
  19. 19.
    L. Lu, M.L. Sui, and K. Lu: ActaMater., 2001, vol. 49, pp. 4127–34.CrossRefGoogle Scholar
  20. 20.
    S. Suwas, A.K. Singh, K.N. Rao, and T. Singh: Zeitschriftfür Met., 2003, vol. 93, pp. 918–27.Google Scholar
  21. 21.
    G. Benchabane, Z. Boumerzoug, T. Gloriant, and I. Thibon: Phys. B Condens. Matter, 2011, vol. 406, pp. 1973–6.CrossRefGoogle Scholar
  22. 22.
    L. Lapeire, J. Sidor, P. Verleysen, K. Verbeken, I. De Graeve, H. Terryn, and L.A.I. Kestens: Acta Mater., 2015, vol. 95, pp. 224–35.CrossRefGoogle Scholar
  23. 23.
    S. I. Wright, M. M. Nowell, and D. P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29CrossRefGoogle Scholar
  24. 24.
    N. Harshavardhana, G. Kumar, and A.K. Saxena: Bull. Mater. Sci. (manuscript under review)Google Scholar
  25. 25.
    T. Konkova, S. Mironova, A. Korznikov, and S.L. Semiatin: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7432–43.CrossRefGoogle Scholar
  26. 26.
    C.J. Meechan and J.A. Brinkman: Phys. Rev., 1956, vol. 103, pp. 1193–202.CrossRefGoogle Scholar
  27. 27.
    R. Losehand, F. Rau, and H. Wenzl: Radiat. Eff., 1969, vol. 2, pp. 69–74.CrossRefGoogle Scholar
  28. 28.
    O. Buck, D. Schumacher, and A. Seeger: Basic Solid State Phys., 1973, vol. 707, pp. 707–11.CrossRefGoogle Scholar
  29. 29.
    W. Schuele: Tech. Report, Jt. Res. Centre, Eur. Commun. Inst. Adv. Mater., 1994.Google Scholar
  30. 30.
    H. Yoshinaga: Basic solid state Phys., 1966, vol. 18, pp. 625–36.CrossRefGoogle Scholar
  31. 31.
    Y. Chang and R. Higgins: Phys. Rev. B, 1975, vol. 12, pp. 4261–81.CrossRefGoogle Scholar
  32. 32.
    K.M. Mannan and K.R. Karim: J. Phys. F Met. Phys., 1975, vol. 5, pp. 1687–93.CrossRefGoogle Scholar
  33. 33.
    Z.S. Basinski, M. Sahoo, and S. Saimoto: Acta Metall., 1977, vol. 25, pp. 657–65.CrossRefGoogle Scholar
  34. 34.
    Z.S. Basinski and J.S. Dugdale: Phys. Rev. B, 1985, vol. 32, pp. 2149–55.CrossRefGoogle Scholar
  35. 35.
    T.H. Blewitt, R.R. Coltman, and J.K. Redman: Phys. Rev., 1954, vol. 4, p. 891.CrossRefGoogle Scholar
  36. 36.
    I. Nakamichi: Mater. Sci. Forum, 1996, vol. 207–209, pp. 47–58.CrossRefGoogle Scholar
  37. 37.
    W. Yan, J. Chen, X.H. Fan: Nonferrous Metals Soc. China, 2003, vol. 13, pp. 1075–9.Google Scholar
  38. 38.
    N. Harshavardhana: PhD thesis, Indian Institute of Technology Bombay, Mumbai, India, 2017.Google Scholar
  39. 39.
    N. Harshavardhana, M.P. Gururajan, and P. Pant: Manuscript under preparationGoogle Scholar
  40. 40.
    S. Kirkpatrick: Rev. of Mod. Phys., 1973, vol. 45, pp. 574-588.CrossRefGoogle Scholar
  41. 41.
    I. Webman, J. Jortner, and M.H. Cohen: Phys. Rev. B, 1975, vol. 11, pp. 2885-2892.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • N. Harshavardhana
    • 2
  • M. P. Gururajan
    • 1
  • Prita Pant
    • 1
    Email author
  1. 1.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Mechanical EngineeringSRM Institute of Science and TechnologyKancheepuramIndia

Personalised recommendations