Skip to main content
Log in

Electrodeposition of Iron with Co-deposition of Carbon: On the Nature of Nanocrystalline Fe-C Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fe-C coatings were electrodeposited from an iron-sulfate electrolyte containing citric acid as a carbon source. Differently thick coatings were deposited onto amorphous substrates, which allows substrate-unbiased nucleation and thereby enables the study of the intrinsic growth of Fe-C coatings. The internal structure of the Fe-C coating was systematically investigated applying complementary methods of materials characterization using microscopy, spectroscopy, and X-ray diffraction analysis, which was further supplemented with microhardness measurements. For the measured high carbon concentration of more than 0.8 wt pct, the experimental results indicate the formation of Fe2C carbides. Together with the nanocrystalline carbon-free ferrite grains with strong 〈311〉 fiber texture, the carbides provide a very high microhardness of almost 800 HV, as measured for the Fe-C coatings independent of the coating thickness. The results essentially contribute to understanding of the growth characteristics and phase formation during electrodeposition of the Fe-C coatings, which is needed for their industrial applications as hard coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.E. Cleaves and J.G. Thompson: The Metal-Iron, Alloys of Iron Research Monograph Series, McGraw-Hill, New York, 1935, pp. 5-17.

    Google Scholar 

  2. A.E. Tashkin: Russ. Eng. J., 1969, vol. 49, pp. 20-1.

    Google Scholar 

  3. G.I. Morozov and V.I. Morozov: Met. Sci. Heat Treat., 1974, vol. 16, pp. 888-90.

    Article  Google Scholar 

  4. M. Schlesinger, M. Paunovic, and M. Izaki: Modern Electroplating, 5th ed. John Wiley & Sons, Hoboken, NJ, 2010, pp. 309-26.

    Book  Google Scholar 

  5. A.S.M.A. Haseeb, Y. Hayashi, M. Masuda, and M. Arita: Metall. Mater. Trans. B, 2002, vol. 33, pp. 921-7.

    Article  Google Scholar 

  6. Y. Fujiwara, M. Izaki, H. Enomoto, T. Nagayama, E. Yamauchi, and A. Nakae, J. Appl. Electrochem., 1998, vol. 28, pp. 855-62.

    Article  Google Scholar 

  7. Y. Fujiwara, T. Nagayama, A. Nakae, M. Izaki, H. Enomoto, and E. Yamauchi: J. Electrochem. Soc., 1996, vol. 143, pp. 2584-90.

    Article  Google Scholar 

  8. A.S.M.A. Haseeb and M.Z. Huq: Met. Finish., 1997, vol 95, pp. 30-4.

    Article  Google Scholar 

  9. M. Izaki and T. Omi: Metall. Mater. Trans. A, 1996, vol. 27, pp. 483-6.

    Article  Google Scholar 

  10. N. Miyamoto, K. Yoshida, M. Matsuoka, and J. Tamaki: J. Electrochem. Soc., 2004, vol. 151, pp. C645-8.

    Article  Google Scholar 

  11. M. Izaki, N. Miyamoto, A. Nakae, T. Hasegawa, S. Watase, M. Chigane, Y. Fujiwara, M. Ishikawa, and H. Enomoto: J. Electrochem. Soc., 2002, vol. 149, pp. C370-4.

    Article  Google Scholar 

  12. M. Panayotova: Surf. Coat. Technol., 2000, vol. 124, pp. 266–71.

    Article  Google Scholar 

  13. T. Müller, J. Grimwood, A. Bachmaier, T. Schöberlm, and R. Pippan: Metals, 2018, vol. 8, p. 363.

    Article  Google Scholar 

  14. S.D. Dahlgren and M.D. Merz: Metall. Mater. Trans., 1971, vol. 2, pp. 1753-60.

    Google Scholar 

  15. A. Weck, C.W. Sinclair, C.P. Scott, and C. Maunder: J. Mater. Sci., 2002, vol. 47, pp. 6939-47.

    Article  Google Scholar 

  16. I. Jouanny, V. Demange, J. Ghanbaja, and E. Bauer-Gosse: J. Mater. Res., 2010, vol. 25, pp. 1859-69.

    Article  Google Scholar 

  17. X. Zhao, R.J. Sanderson, L. MacEachern, and R.A. Dunlap, Electrochimica Acta, 2015, vol. 170, pp. 16-24.

    Article  Google Scholar 

  18. R. Winand, Hydrometallurgy, 1992, vol. 29, pp. 567-98.

    Article  Google Scholar 

  19. M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, 2nd ed. John Wiley & Sons, Hoboken, NJ, 2006, pp. 113-37.

    Book  Google Scholar 

  20. J.I. Langford: J. Appl. Cryst., 1978, vol. 11, pp. 10-4.

    Article  Google Scholar 

  21. T.H. de Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels: J. Appl. Cryst., 1982, vol. 15, pp. 308-14.

    Article  Google Scholar 

  22. C. Esling, E. Bechler-Ferry, and H.J. Bunge: J. Phys. Lett., 1981, vol. 42, pp. 141-4.

    Article  Google Scholar 

  23. N. Miyamoto, S. Sakamoto, H. Tamura, M. Matsuoka, and J. Tamaki: J. Electrochem. Soc., 2005, vol. 152, pp. C488-92.

    Article  Google Scholar 

  24. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, 2nd ed. Chapman & Hall, New York, NY, 2009, pp. 382-96.

    Google Scholar 

  25. G.A. Nematollahi, B. Grabowski, D. Raabe, and J. Neugebauer: Acta Metall., 2016, vol. 111, pp. 321-34.

    Google Scholar 

  26. Y. Hirotsu and S. Nagakura: Acta Metall., 1972, vol. 20, pp. 645-55.

    Article  Google Scholar 

  27. H.L. Yakel: Int. Met. Rev., 1985, vol. 30, pp. 17-40.

    Article  Google Scholar 

  28. S.W. Thompson: Mater. Charact., 2015, vol. 106, pp. 452-62.

    Article  Google Scholar 

  29. S.W. Thompson: Metallogr. Microstruct. Anal., 2016, vol. 5, pp. 367-83.

    Article  Google Scholar 

  30. H.K.D.H. Bhadeshia: Bainite in Steels, 3th ed. Maney Publishing, Hanover Walk, Leeds, U.K., 2015, p. 62.

    Google Scholar 

  31. X.T. Deng, T.L. Fu, Z.D. Wang, R.D.K. Misra, and G.D. Wang: Mater. Sci. Technol., 2016, vol. 32(4), pp. 320-7.

    Article  Google Scholar 

  32. L. Hui, Z.Q. Chen, Z. Xie, and C. Li, Stability: J. Supercond. Nov. Magn., 2018, vol. 31, pp. 353-64.

    Article  Google Scholar 

  33. X. Chong, Y. Jiang, and J. Feng: J. Alloys Compd., 2018, vol. 745, pp. 196-211.

    Article  Google Scholar 

  34. A. Oila, C. Lung, and S. Bull: J. Mater. Sci., 2014, vol. 49, pp. 2383-90.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge OCAS NV, ArcelorMittal Global R&D Gent (Belgium), a. h. nichro Haardchrom (Denmark), and Fast Track—Societal Partnership (Denmark), funded by the Innovation Fund Denmark (IFD), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Obitsø Nielsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, J.O., Møller, P. & Pantleon, K. Electrodeposition of Iron with Co-deposition of Carbon: On the Nature of Nanocrystalline Fe-C Coatings. Metall Mater Trans A 50, 3785–3793 (2019). https://doi.org/10.1007/s11661-019-05311-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05311-z

Navigation