Skip to main content

Advertisement

Log in

Synthesis, Characterization, and Mechanical Properties Evaluation of Mg-Ti3AlC2 Composites Produced by Powder Metallurgy/Hot Pressing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Magnesium (Mg)-titanium aluminum carbide (Ti3AlC2) composites were produced by hot pressing (HP) at 0.15 to 1 MPa, 923 K (650 °C) for 30 minutes; Mg-Ti3AlC2 (10 to 30 vol pct) composite produced at 0.15 MPa, 923 K (650 °C) for 30 minutes exhibited 95 to 99 pct relative density (RD), while Mg-40Ti3AlC2 produced at 1 MPa, 923 K (650 °C) for 30 minutes exhibited full density. Improved densification results are mainly due to the flow of liquid Mg between the Ti3AlC2 particles. The monolithic Mg processed at 5 MPa, 873 K (600 °C) for 5 minutes also exhibited full density. Further, Mg-Ti3AlC2 composites produced at low pressure (1 MPa) exhibited maximum density as compared to other research works. Monolithic Mg exhibited a microhardness of 62 ± 8 HV0.5. Besides, as the Ti3AlC2 content was varied from 10 to 40 vol pct, the microhardness of Mg-Ti3AlC2 composites increased from 62 ± 5 to 158 ± 11 HV0.5. The compressive strength of Mg-Ti3AlC2 (10 to 40 vol pct) composite at room temperature (RT) was in the range of 180 ± 10 to 617 ± 13 MPa. The compressive strengths of Mg-Ti3AlC2 (30 and 40 vol pct) composites at 473 K (200 °C) were 366 ± 20 and 480 ± 71 MPa, respectively. The flexural strength of Mg-Ti3AlC2 composites (20 to 40 vol pct) was determined to be in the range of 335 ± 12 to 513 ± 3 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1.H.Z. Ye and Y.L. Xing: J. Mater. Sci., 2004, vol. 39, pp. 6153–71.

    Article  Google Scholar 

  2. 2.A. Luo, J. Renaud, I. Nakatsugawa, and J. Plourde: JOM, 1995, vol. 47 (7), pp. 28–31.

    Article  Google Scholar 

  3. B.B. Clow: Adv Mater Processes 1996, 150(4):33–34.

    Google Scholar 

  4. 4.B.J. Lazan: Damping of Materials and Members in Structural Mechanics, Pergamon Press, Oxford, United Kingdom, 1968.

    Google Scholar 

  5. 5.M. Kouzeli and D.C. Dunand: Acta Mater., 2003, vol. 51, pp. 6105–21.

    Article  Google Scholar 

  6. 6.T.S. Srivatsan, I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: J. Mater. Sci., 1991, vol. 26, pp. 5965–78.

    Article  Google Scholar 

  7. 7.B.W. Chua, L. Lu, and M.O. Lai: Compos. Struct., 1999, vol. 47 (1–4), pp. 595–601.

    Article  Google Scholar 

  8. 8.L. Li, M.O. Lai, M. Gupta, B.W. Chua, and A. Osman: J. Mater. Sci., 2000, vol. 35, pp. 5553–61.

    Article  Google Scholar 

  9. 9.A. Luo: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2445–55.

    Article  Google Scholar 

  10. 10.C. Badini, F. Marino, M. Montorsi, and X.B. Guo: Mater. Sci. Eng. A–Struct. Mater.: Prop. Microstr. Process, 1992, vol. A157, pp. 53–61.

    Article  Google Scholar 

  11. 11.K.K. Deng, K. Wu, Y.W. Wu, K.B. Nie, and M.Y. Zheng: J. Alloys Compd., 2010, vol. 504, pp. 542–47.

    Article  Google Scholar 

  12. 12.J. Lan, Y. Yang, and X. Li: Mater. Sci. Eng., 2004, vol. A386, pp. 284–90.

    Article  Google Scholar 

  13. 13.X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang, and Y.D. Huang: Mater. Des., 2014, vol. 57, pp. 638–45.

    Article  Google Scholar 

  14. 14.L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.C. Li: Nature, 2015, vol. 528, pp. 539–43.

    Article  Google Scholar 

  15. 15.A. Contreras, V.H. Lopez, and E. Bedolla: Scripta Mater., 2004, vol. 51, pp. 249–53.

    Article  Google Scholar 

  16. 16.Y. Yao and L. Chen: J. Mater. Sci. Technol., 2014, vol. 30, pp. 661–65.

    Article  Google Scholar 

  17. 17.M. Habibnejad-Korayem, R. Mahmudi, and W.J. Poole: Mater. Sci. Eng., 2009, vol. A519, pp. 198–203.

    Article  Google Scholar 

  18. M.W. Barsoum and M. Radovic: in Annual Review of Materials Research, D.R. Clarke and P. Fratzl, eds., 2011, vol. 41, pp. 195–227. https://doi.org/10.1146/annurev-matsci-062910-100448

  19. 19.M. Radovic and M.W. Barsoum: Am. Ceram. Soc. Bull., 2013, vol. 92 (3), pp. 20–27.

    Google Scholar 

  20. 20.M.W. Barsoum, T. Zhen, S.R. Kalidindi, M. Radovic, and A. Murugaiah: Nat. Mater., 2003, vol. 2 (2), pp. 107–11.

    Article  Google Scholar 

  21. 21.X.H. Wang and Y.C. Zhou: J. Mater. Chem., 2002, vol. 12, pp. 455–60.

    Article  Google Scholar 

  22. 22.X.H. Wang and Y.C. Zhou: Acta Mater., 2002, vol. 50, pp. 3143–51.

    Article  Google Scholar 

  23. 23.Y. Zhang, Z.M. Sun, and Y.C. Zhou: Mater. Res. Innov., 1999, vol. 3, pp. 80–84.

    Article  Google Scholar 

  24. 24.L. Peng: Scripta Mater., 2007, vol. 56, pp. 729–32.

    Article  Google Scholar 

  25. 25.W.J. Wang, V. Gauthier-Brunet, G.P. Bei, G. Laplanche, J. Bonneville, A. Joulain, and S. Dubois: Mater. Sci. Eng. A, 2011, vol. 530, pp. 168–73.

    Article  Google Scholar 

  26. 26.J. Zhang and Y.C. Zhou: J. Mater. Res., 2008, vol. 23 (4), pp. 924–32.

    Article  Google Scholar 

  27. 27.W.J. Wang, V. Gauthier-Brunet, G.P. Bei, G. Laplanche, J. Bonneville, A. Joulain, and S. Dubois: Mater. Sci. Eng., 2011, vol. A530, pp. 168–73

    Article  Google Scholar 

  28. 28.D.A.H. Hanaor, L. Hu, W.H. Kan, G. Proust, M. Foley, I. Karaman, and M. Radovic: Mater. Sci. Eng., 2016, vol. A672, pp. 247–56.

    Article  Google Scholar 

  29. 29.X. Huang, Y. Feng, G. Qian, H. Zhao, J. Zhang, and X. Zhang: Mater. Sci. Technol., 2018, vol. 34, pp. 757–62.

    Article  Google Scholar 

  30. 30.S. Gupta and M.W. Barsoum: Wear, 2011, vol. 271, pp. 1878–94.

    Article  Google Scholar 

  31. 31.L. Hu, A. Kothalkar, I. Karaman, G. Proust, and M. Radovic: J. Alloys Compd., 2014, vol. 610, pp. 635–44.

    Article  Google Scholar 

  32. 32.A. Kothalkar, R. Benitez, L. Hu, M. Radovic, and I. Karaman: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2646–58.

    Article  Google Scholar 

  33. 33.S. Amini, C.Y. Ni, and M.W. Barsoum: Compos. Sci. Technol., 2009, vol. 69, pp. 414–20.

    Article  Google Scholar 

  34. 34.S. Amini and M.W. Barsoum: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3707–18.

    Article  Google Scholar 

  35. 35.A. Kontsos, T. Loutas, V. Kostopoulos, K. Hazeli, B. Anasori, and M.W. Barsoum: Acta Mater., 2011, vol. 59, pp. 5716–27.

    Article  Google Scholar 

  36. L. Hu, M. O’Neil, V. Erturun, R. Benitez, G. Proust, I. Karaman, and M. Radovic: Scient. Rep., 2016, 6:35523. https://doi.org/10.1038/srep35523

    Article  Google Scholar 

  37. 37.A. Kumar, K.S. Tun, A.D. Kohadkar, and M. Gupta: Metals, 2017, vol. 7, p. 104.

    Article  Google Scholar 

  38. 39.M. Nelson, M.T. Agne, B. Anasori, J. Yang, M.W. Barsoum: Mater. Sci. Eng., 2017, vol. A705, pp. 182–88.

    Article  Google Scholar 

  39. 38.N.V. Tzenov and M.W. Barsoum: J. Am. Ceram. Soc., 2000, vol. 83 (6), pp. 825-32.

    Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support received from the Aeronautical Research and Development Board, New Delhi, Government of India (Grant No. ARDB/01/2031765/M/I). We thank our colleague Dr. Anjana Jain, Materials Science Division, CSIR-NAL, for recording the XRD patterns, and Mr. Siju, Surface Engineering Division, CSIR-NAL, for the FE-SEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rangaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 19, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangaraj, L., Sagar, R.V., Stalin, M. et al. Synthesis, Characterization, and Mechanical Properties Evaluation of Mg-Ti3AlC2 Composites Produced by Powder Metallurgy/Hot Pressing. Metall Mater Trans A 50, 3714–3723 (2019). https://doi.org/10.1007/s11661-019-05289-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05289-8

Navigation