Skip to main content
Log in

Enhancement of Cavitation Erosion Resistance of Cast Iron with TIG Remelted Surface

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The cavitation erosion resistance was increased several times after the surface of nodular cast iron EN-GJS-400-15 samples was melted using an industrially inexpensive process (TIG—Tungsten Inert Gas) to generate a layer with a white cast iron microstructure that contributes to the improvement of the wear resistance. Using currents of 60, 70, 80, and 90 A at an approximately constant voltage of 9.5 to 10 V, the process led to the complete or partial dissolution of graphite nodules and to the resolidification of the liquid in primary austenitic dendrites (that undergo further decomposition into ferrite and cementite) and into interdendritic ledeburitic acicular eutectic. The analysis of the TIG surface-melted samples tested for cavitation erosion showed a ductile-type fracture of the surface and a decrease of 2.2 to 3.9 times of the maximum erosion penetration depth and 1.9 to 3.2 times the erosion rate compared to the heat-treated reference material annealed to relieve stress. Rapid cooling of the melted surface and the formation of a large amount of eutectic cementite instead of graphite created fine microstructures that contributed to the increase in hardness and consequently to a better resistance to cavitation erosion of the TIG surface-melted samples compared to the one of the base gray cast iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. 1. S. Hattori and T. Kitagawa: Wear, 2010, vol. 269, nos. 5-6, pp. 443-8.

    Article  Google Scholar 

  2. 2. K.P. Balan, A.V. Reddy, V. Joshi, and G. Sundararajan: Wear, 1991, vol. 145, pp. 283-96.

    Article  Google Scholar 

  3. 3. T. Okada, Y. Iwai, and A. Yamamoto: Wear, 1983, vol. 84, pp. 297-312.

    Article  Google Scholar 

  4. 4. W.J. Tomlinson, J.H.P.C. Megaw, A.S. Bransden, and M. Girardi: Wear, 1987, vol. 116, no. 2, pp. 249-60.

    Article  Google Scholar 

  5. 5. S.P. Gadag and M.N. Srinivasan: J. Mater. Process. Technol., 1995, vol. 51, nos. 1-4, pp. 150–63.

    Article  Google Scholar 

  6. 6. K.Y. Benyounis, O.M.A. Fakron, J.H. Abboud, A.G. Olabi, and M.J.S. Hashmi: J. Mater. Process. Technol., 2005, vol. 170, pp. 127-32.

    Article  Google Scholar 

  7. 7. L.C. Chang, I.C. Hsui, L.H. Chen, and T.S. Lui: Wear, 2004, vol. 257, pp. 1125-32.

    Article  Google Scholar 

  8. R. Arabijeshvaghani, M. Shamanian, and M. Jaberzadeh: Mater. Des., 2011, vol. 32, pp. 2028-33.

    Article  Google Scholar 

  9. 9. I. Mitelea, I. Bordeaşu, M. Pelle, and C.M. Crăciunescu: Ultrasonic Sonochem., 2015, vol. 23, pp. 385-90.

    Article  Google Scholar 

  10. 10. M.S. Heydarzadeh, G. Karshenas, and S.M. Boutorabi: J. Mater. Process. Technol., 2004, vols. 153–154, pp. 199-202.

    Article  Google Scholar 

  11. 11. M. Jean and Y. Tzeng: Int. J. Adv. Manuf. Technol., 2004, vol. 24, pp. 190-8.

    Google Scholar 

  12. 12. A. Gulzar, J.I. Akhter, M. Ahmad, G. Ali, M. Mahmood, and M. Ajmal: Appl. Surf. Sci., 2009, vol. 255, pp. 8527-32.

    Article  Google Scholar 

  13. 13. K.Y. Benyounis, O.M. Fakron, and J.H. Abboud: Mater. Design, 2009, vol. 30, pp. 674-8.

    Article  Google Scholar 

  14. 14. A. Roy and I. Manna: Mater. Sci. Eng. A, 2001, vol. 279, pp. 85-93.

    Article  Google Scholar 

  15. 15. K.F. Alabeedi, J.H. Abboud, and K.Y. Benyounis: Wear, 2009, vol. 266, pp. 925-33.

    Article  Google Scholar 

  16. 16. C.H. Chen, C.P. Ju, and J.M. Rigsbee: Mater. Sci. Technol., 1988, vol. 4, p. 161.

    Article  Google Scholar 

  17. 17. A. Amirsadeghi and M.S. Heydarzadeh: J. Mater. Process. Technol., 2008, vol. 201, pp. 673-7.

    Article  Google Scholar 

  18. A. Amirsadeghi, M.S. Heydarzadeh, and S.F. Kashanibozorg: J. Iron Steel Res. Int., 2008, vol. 15, pp. 86-94.

    Article  Google Scholar 

  19. 19. T. Ishida: J. Mater. Sci., 1983, vol. 18, pp. 1773-84.

    Article  Google Scholar 

  20. 20. W.S. Dai, L.H. Chen, and T.S. Lui: Wear, 2001, vol. 248, pp. 201-10.

    Article  Google Scholar 

  21. M. Shamanian, S.M.R. Mousaviabarghouie, and S.R. Mousavi: Mater. Design, 2010, vol. 31, pp. 2760-6.

    Article  Google Scholar 

  22. *** Standard test method for cavitation erosion using vibratory apparatus ASTM G32-2010.

  23. 23. I. Mitelea, C. Ghera, I. Bordeaşu, and C. Crăciunescu: Trans. ASME, 2018, vol. 140, pp. 1-13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Crăciunescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 8, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitelea, I., Bena, T., Bordeasu, I. et al. Enhancement of Cavitation Erosion Resistance of Cast Iron with TIG Remelted Surface. Metall Mater Trans A 50, 3767–3775 (2019). https://doi.org/10.1007/s11661-019-05287-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05287-w

Navigation