Skip to main content
Log in

Atomic Structural Competition in the Al85.5Ni9.5La5 Alloy During Liquid-to-Solid Transition

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The atomic structural evolution of the molten Al85.5Ni9.5La5 alloy is investigated during cooling using an in situ high-energy X-ray diffraction method following indirect analysis by a reverse Monte Carlo simulation and Voronoi tessellation. The competition between crystal-like and non-crystal-like clusters is insignificant above liquidus. However, below liquidus, a sudden increase in the crystal-like clusters was found at slow cooling rates while at high cooling rates all clusters were frozen into a glassy state directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A. Inoue, T. Zhang, T. Masumoto: Mater. trans. JIM., 1989, vol. 30, pp. 965-972.

    Article  Google Scholar 

  2. A. Inoue: Acta mater., 2000, vol. 48, pp. 279-306.

    Article  Google Scholar 

  3. J. Mu, H. Fu, Z. Zhu: Adv. Eng. Mater., 2009, vol. 11, pp. 530-532.

    Article  Google Scholar 

  4. M. Xia, S. Zhang, J. Li, C. Ma: Appl. Phys. Lett., 2006, vol. 88, p. 26191326.

    Google Scholar 

  5. Y. Shen, T. Kim, A. Gangopadhyay, K. Kelton: Phys. Rev. Lett., 2009, vol. 102, p. 057801.

    Article  Google Scholar 

  6. Y. Cheng, E. Ma, H. Sheng: Appl. Phys. Lett., 2008, vol. 93, p. 111913.

    Article  Google Scholar 

  7. Z. Wu, M. Li, W. Wang: Nature commun., 2015, vol. 6, p. 6035.

    Article  Google Scholar 

  8. K. Kelton, G. Lee, A. Gangopadhyay, R. Hyers, T. Rathz, J. Rogers, M. Robinson, D. Robinson: Phys. Rev. Lett., 2003, vol. 90, p. 195504.

    Article  Google Scholar 

  9. A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A. Yavari, T. Sakurai, M. Chen: Nature Mater., 2011, vol. 10, pp. 28-33.

    Article  Google Scholar 

  10. A. Liu, M. Neish, G. Stokol, G. Buckley, L. Smillie, M. de Jonge, R. Ott, M. Kramer, L. Bourgeois: Phys. Rev. Lett., 2013, vol. 110, p. 205505.

    Article  Google Scholar 

  11. C. Tang, P. Harrowell: Nature Mater., 2013, vol. 12, pp. 507-511.

    Article  Google Scholar 

  12. M. Leocmach, H. Tanaka: Nature Commun., 2013, vol. 3, p. 974.

    Article  Google Scholar 

  13. P. Steinhardt, D. Nelson, M. Ronchetti: Phys. Rev. B., 1983, vol. 28, p. 784.

    Article  Google Scholar 

  14. S. Nosé, F. Yonezawa: J. Chem. Phys., 1986, vol. 84, pp. 1803-1814.

    Article  Google Scholar 

  15. H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Leppmann, G. Reiter: Nature., 2000, vol. 408, pp. 839-841.

    Article  Google Scholar 

  16. H. Jónsson, H. Andersen: Phys. Rev. Lett., 1988, vol. 60, pp. 2295-2298.

    Article  Google Scholar 

  17. U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz: Science, 2001, vol. 292, pp. 258-262.

    Article  Google Scholar 

  18. M.M. Maye, D. Nykypanchuk, D. van der Lelie, O. Gang: Small., 2007, vol. 3, pp. 1678-1682.

    Article  Google Scholar 

  19. J. Baumgartner, A. Dey, P. Bomans, C. Coadou, P. Fratzl, N. Sommerdijk, D. Faivre: Nature Mater., 2013, vol. 12, pp. 310-314.

    Article  Google Scholar 

  20. S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, M. Rühle: Science., 2005, vol. 310, pp. 661-663.

    Article  Google Scholar 

  21. K. Kelton: Intermetallics., 2006, vol. 14, pp. 966-971.

    Article  Google Scholar 

  22. G. Kurtuldu, J. Philippe, M. Rappaz: Acta Mater., 2013, vol. 61, pp. 7098-7108.

    Article  Google Scholar 

  23. D. Watson: Comp. J., 1981, vol. 24, pp. 167-172.

    Article  Google Scholar 

  24. M. Tanemura, T. Ogawa, N. Ogita: J. Comp. Phys., 1983, vol. 51, pp. 191-207.

    Article  Google Scholar 

  25. M.G. Tucker, D.A. Keen, M.T. Dove, A.L. Goodwin, Q. Hui: J. Phys. Condens. Matter., 2007, vol. 19, p. 335218.

    Article  Google Scholar 

  26. K. Saksl, P. Jóvári, H. Franz, Q. Zeng, J. Liu, J. Jiang: J Phys. Condens. Matter., 2006, vol. 18, pp. 7579-7592.

    Article  Google Scholar 

  27. K. Saksl, P. Jóvári, H. Franz, J.Z. Jiang: J. Appl. Phys., 2005, vol. 97, p. 1640.

    Article  Google Scholar 

  28. H. Hsieh, B. Toby, T. Egami, Y. He, S. Poon, G. Shiflet: J. Mater. Res., 1990, vol. 5, pp. 2807-2812.

    Article  Google Scholar 

  29. K. Ahn, D. Louca, S. Poon, G. Sheflet: Phys. Rev. B., 2004, vol. 70, p. 224103.

    Article  Google Scholar 

  30. O. Rachek: J. Non-Cryst. Solids., 2006, vol. 352, pp. 3781-3786.

    Article  Google Scholar 

  31. N. Wu, M. Yan, L. Zuo, J.Q. Wang: J. Appl. Phys., 2014, vol. 115, p. 043523.

    Article  Google Scholar 

  32. Y. He, S. Poon, G. Shiflet: Science., 1988, vol. 241, pp. 1640-1642.

    Article  Google Scholar 

  33. E. Lorch: J.Phys.C: Solid State Phys., 1969, vol. 2, pp. 229-237.

    Article  Google Scholar 

  34. T. Egami, S. Billinge: Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Elsevier, New York, 2003, pp. 10-11.

    Google Scholar 

  35. R. McGreevy: J. Non-cryst. Solids., 1993, vol. 156, pp. 949-955.

    Article  Google Scholar 

  36. M. Tanemura, Y. Hiwatari, H. Matsuda, O. Tohru, O. Naofumi, U. Akira: Prog. Theor. Phys., 1977, vol. 58, pp. 1079-1095.

    Article  Google Scholar 

  37. J. Cape, J. Finney, L. Woodcock: J. Chem. Phys., 1981, vol. 75, pp. 2366-2373.

    Article  Google Scholar 

  38. J. Hwang, Z. Melgarejo, Y. Kalay, M. Kramer, D. Stone, P. Voyles: Phys. Rev. Lett., 2012, vol. 108, p. 195505.

    Article  Google Scholar 

  39. P. Zhang, J. Maldonis, M. Besser, M. Kramer, P. Voyles: Acta Mater., 2016, vol. 109, pp. 103-114.

    Article  Google Scholar 

  40. H. Li, G. Wang, J. Zhao, X. Bian: J Chem. Phys., 2002, vol. 116, p. 10809.

    Article  Google Scholar 

  41. N. Mauro, J. Bendert, A. Vogt, J. Gewin, K. Kelton: J. Chem. Phys., 2011, vol. 135, p. 044502.

    Article  Google Scholar 

  42. P. Lü, H.P. Wang, P. Zou, K. Zhou, L. Hu, B. Wei: J. Appl. Phys., 2018, vol. 124, p. 025103.

    Article  Google Scholar 

  43. Y. Hu, Y. Li, Y. Yang, P. Guan, H. Bai, W. Wang: PNAS., 2018, vol. 115, p. 201802300.

    Google Scholar 

Download references

This work is supported by The National Key R&D Program of China (2017YFA0403802) and the National Natural Science Foundation of China (51474148, 51727802, U1660203, 51604173). The support of the synchrotron high-energy X-ray diffraction by the BL13W1 of the Shanghai Synchrotron Radiation Facility (SSRF), China, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 4, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Xia, M., Zeng, L. et al. Atomic Structural Competition in the Al85.5Ni9.5La5 Alloy During Liquid-to-Solid Transition. Metall Mater Trans A 50, 3441–3445 (2019). https://doi.org/10.1007/s11661-019-05279-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05279-w

Navigation