Lift-Off of Surface Oxides During Galvanizing of a Dual-Phase Steel in a Galvannealing Bath

  • K. F. Chen
  • I. Aslam
  • B. LiEmail author
  • R. L. Martens
  • J. R. Goodwin
  • F. E. Goodwin
  • M. F. Horstemeyer


Focused ion beam (FIB) and transmission electron microscopy (TEM) were used to characterize the interfacial structure of a dual-phase steel after galvanizing in a galvannealing bath with a dissolved aluminum concentration of 0.125 wt pct. Improved specimen preparation overcame preferential milling difficulties so that the interface region of the zinc-coated steel specimen was well preserved. The results show that the surface MnO oxide, a product of heat treating prior to galvanizing, was lifted off the surface of the substrate and subsequently entrapped in the Zn-Fe phase during galvanizing. A discontinuous inhibition layer was formed directly on top of the substrate. In regions where the inhibition layer was absent, Zn-Fe crystals grew directly on top of the substrate. This behavior significantly differs from the parallel study in which a DP steel was galvanized in a Zn bath with a higher Al concentration, where no lift-off of the MnO oxide was observed and the inhibition layer grew directly on top of the MnO oxide film. Possible mechanisms that are responsible for these significant differences were discussed.



KFC, IA, BL, and MFH gratefully thank the support from the International Zinc Association under the contract ZCO-64, Center for Advanced Vehicular Systems, Mississippi State University, and U.S. National Science Foundation under the Grants (#1506944 and #1506878). The authors also thank POSCO for providing specimens for this work.


  1. 1.
    R. Kuziak, R. Kawalla, and S. Waengler: Arch. Civ. Mech. Eng., 2008, vol. 8, pp. 103–117.CrossRefGoogle Scholar
  2. 2.
    A. Mayyas, A. Qattawi, M. Omar, and D. Shan: Renew. Sustain. Energy Rev., 2012, vol. 16, pp. 1845–1862.CrossRefGoogle Scholar
  3. 3.
    O. Kwon, K.Y. Lee, G.S. Kim, and K.G. Chin: in Materials Science Forum, vol. 638, Trans Tech Publ, 2010, pp. 136–41.Google Scholar
  4. 4.
    A. Grajcar, R. Kuziak, and W. Zalecki: Arch. Civ. Mech. Eng., 2012, vol. 12, pp. 334–341.CrossRefGoogle Scholar
  5. 5.
    H. Liu, F. Li, W. Shi, S. Swaminathan, Y. He, M. Rohwerder, and L. Li: Surf. Coat. Technol., 2012, vol. 206, pp. 3428–3436.CrossRefGoogle Scholar
  6. 6.
    A.R. Marder: Prog. Mater. Sci., 2000, vol. 45, pp. 191–271.CrossRefGoogle Scholar
  7. 7.
    L. Cho, M.S. Kim, Y.H. Kim, and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4484–4498.CrossRefGoogle Scholar
  8. 8.
    X. Vanden Eynde, J.P. Servais, and M. Lamberigts: Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Films, 2003, vol. 35, pp. 1004–14.Google Scholar
  9. 9.
    Y. Kim, J. Lee, K.-S. Shin, S.-H. Jeon, and K.-G. Chin: Mater. Charact., 2014, vol. 89, pp. 138–145.CrossRefGoogle Scholar
  10. 10.
    L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 362–371.CrossRefGoogle Scholar
  11. 11.
    S. Alibeigi and J.R. McDermid: in Proceedings of the Galvatech, vol. 13, 2013, pp. 24–26.Google Scholar
  12. 12.
    N.L. Okamoto, J. Okumura, M. Higashi, and H. Inui: Acta Mater., 2017, vol. 129, pp. 290–299.CrossRefGoogle Scholar
  13. 13.
    M.S. Kim, J.H. Kwak, J.S. Kim, Y.H. Liu, N. Gao, and N.-Y. Tang: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1903–10.CrossRefGoogle Scholar
  14. 14.
    R. Khondker, A. Mertens, and J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 157–65.CrossRefGoogle Scholar
  15. 15.
    R. Kavitha and J.R. McDermid: Surf. Coat. Technol., 2012, vol. 212, pp. 152–158.CrossRefGoogle Scholar
  16. 16.
    M. Blumenau, M. Norden, F. Friedel, and K. Peters: Surf. Coat. Technol., 2011, vol. 205, pp. 3319–27.CrossRefGoogle Scholar
  17. 17.
    G.M. Song, T. Vystavel, N. van der Pers, J.T.M. De Hosson, and W.G. Sloof: Acta Mater., 2012, vol. 60, pp. 2973–81.CrossRefGoogle Scholar
  18. 18.
    R. Sagl, A. Jarosik, D. Stifter, and G. Angeli: Corros. Sci., 2013, vol. 70, pp. 268–275.CrossRefGoogle Scholar
  19. 19.
    I. Aslam, B. Li, R.L. Martens, J.R. Goodwin, H.J. Rhee, and F. Goodwin: Mater. Charact., 2016, vol. 120, pp. 63–8.CrossRefGoogle Scholar
  20. 20.
    M. Blumenau, M. Norden, F. Friedel, and K. Peters: Surf. Coat. Technol., 2010, vol. 205, pp. 828–34.CrossRefGoogle Scholar
  21. 21.
    K.-K. Wang, C.-W. Hsu, L. Chang, D. Gan, and K.-C. Yang: Appl. Surf. Sci., 2013, vol. 285, pp. 458–68.CrossRefGoogle Scholar
  22. 22.
    E.M. Bellhouse, A.I.M. Mertens, and J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 147–156.CrossRefGoogle Scholar
  23. 23.
    G.S. Mousavi and J.R. McDermid: Surf. Coat. Technol. Google Scholar
  24. 24.
    L. Cho, M.S. Kim, Y.H. Kim, and B.C.D. Cooman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5081–95.CrossRefGoogle Scholar
  25. 25.
    Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, and S. Yamaguchi: ISIJ Int., 2009, vol. 49, pp. 564–73.CrossRefGoogle Scholar
  26. 26.
    R. Sagl, A. Jarosik, G. Angeli, T. Haunschmied, G. Hesser, and D. Stifter: Acta Mater., 2014, vol. 72, pp. 192–9.CrossRefGoogle Scholar
  27. 27.
    N. Gao, D.Y.H. Liu, N.-Y. Tang, R. Park, and M.-S. Kim: Genova, Italy, Associazione Italiana di Metallurgia, Milan, 2011, pp. 123–30.Google Scholar
  28. 28.
    K.-C. Lin, P.-W. Chu, C.-S. Lin, and H.-B. Chen: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2690–2698.CrossRefGoogle Scholar
  29. 29.
    M. Blumenau, M. Norden, F. Friedel, and K. Peters: Surf. Coat. Technol., 2011, vol. 206, pp. 559–67.CrossRefGoogle Scholar
  30. 30.
    E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2753–2768.CrossRefGoogle Scholar
  31. 31.
    S. Frenznick, S. Swaminathan, M. Stratmann, and M. Rohwerder: J. Mater. Sci., 2010, vol. 45, pp. 2106–2111.CrossRefGoogle Scholar
  32. 32.
    P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne, and S. Claessens: Rev. Métallurgie–International J. Metall., 2004, vol. 101, pp. 831–837.CrossRefGoogle Scholar
  33. 33.
    E. Baril and G. L’Espérance: Metall. Mater. Trans. A, 1999, vol. 30, pp. 681–695.CrossRefGoogle Scholar
  34. 34.
    L. Chen, R. Fourmentin, and J.R. McDermid: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2128–2142.CrossRefGoogle Scholar
  35. 35.
    E.T. McDevitt, Y. Morimoto, and M. Meshii: in 4 Conference on Zinc and Zinc Alloy Coated Steel Sheet, 1998.Google Scholar
  36. 36.
    D. Paik, M. Hong, and Y. Jin: in Galvatech, vol. 4, 2004, pp. 481–90.Google Scholar
  37. 37.
    S. Dionne: JOM, 2006, vol. 58, pp. 32–40.CrossRefGoogle Scholar
  38. 38.
    Y. Morimoto, E. Mcdevitt, and M. Meshii: ISIJ Int., 1997, vol. 37, pp. 906–13.CrossRefGoogle Scholar
  39. 39.
    I. Hertveldt, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1225–1232.CrossRefGoogle Scholar
  40. 40.
    D.Y.H. Liu and N.-Y. Tang: Galvatech '04: 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, IL. AIST, Warrendale, PA, 2004, pp. 1155–64.Google Scholar
  41. 41.
    Y. Li, S. Jiang, X. Yuan, B. Chen, and Q. Zhang: Surf. Interface Anal., 2012, vol. 44, pp. 472–7.CrossRefGoogle Scholar
  42. 42.
    Y.F. Gong, H.S. Kim, and B.C.D. Cooman: ISIJ Int., 2008, vol. 48, pp. 1745–51.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • K. F. Chen
    • 1
  • I. Aslam
    • 2
    • 3
  • B. Li
    • 1
    Email author
  • R. L. Martens
    • 4
  • J. R. Goodwin
    • 4
  • F. E. Goodwin
    • 5
  • M. F. Horstemeyer
    • 2
    • 3
  1. 1.Department of Chemical and Materials EngineeringUniversity of NevadaRenoUSA
  2. 2.Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleUSA
  3. 3.Department of Mechanical EngineeringMississippi State UniversityStarkvilleUSA
  4. 4.Central Analytical FacilityThe University of AlabamaTuscaloosaUSA
  5. 5.International Zinc AssociationDurhamUSA

Personalised recommendations