Skip to main content
Log in

Thermal Conductivities of Fe-Ni Melts Measured by Non-contact Laser Modulation Calorimetry

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A combination of an electromagnetic levitation technique with a static magnetic field and laser modulation calorimetry was used to measure the thermal conductivity of Fe-Ni melts between 1673 K and 1904 K, including the supercooled temperature region. The static magnetic field suppressed convection, translational motion, and surface oscillation of the levitated droplet to reduce the experimental uncertainty in the measurements. High-purity Fe (99.9985 mass pct) and Ni (99.9960 mass pct) were used for the sample of the measurements. For all melt compositions, the thermal conductivity had a positive temperature dependence, except for a sample with a 0.4 mole fraction of Fe. The measured thermal conductivity values of Fe-Ni were larger than those evaluated from the electric conductivity assuming the Wiedemann–Franz law for all composition ranges. It implies that atomic thermal vibration contributes to the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Xu, W. Zhang, P. D. Lee, Metall. Mater. Trans. A 33A(2002) 1805-1815.

    Article  Google Scholar 

  2. P. Nie, O. A Ojo, Z. Li, Acta Mater., 2014, vol. 77, 85-95.

    Article  Google Scholar 

  3. T. M. Pollock, A. Tin, J. Prop. Power, 2006, vol.22, 361-374.

    Article  Google Scholar 

  4. X. Yuwen, L. Chen, Y. Han, Energy Proc., 2012, vol.17, 1864-1871.

    Article  Google Scholar 

  5. H. Fukuyama, H. Kobatake, K. Takahashi, I. Minato, T. Tsukada, S. Awaji, Meas. Sci. Technol., 2007, vol.18, 2059-2066.

    Article  Google Scholar 

  6. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, S. Awaji, J. Appl. Phys., 2008, vol.104, 054901-1-8.

    Article  Google Scholar 

  7. T. Tsukada, H. Fukuyama, H. Kobatake, Int. J. Heat and Mass Transfer, 2007, vol.50, 3054-3061.

    Article  Google Scholar 

  8. K. Sugie, H. Kobatake, M. Uchikoshi, M. Isshiki, K. Sugioka, T. Tsukada, H. Fukuyama, Jpn. J. Appl. Phys., 2011, vol. 50, 1-6.

    Article  Google Scholar 

  9. M. Watanabe, M. Adachi, H. Fukuyama, J. Mater. Sci., 2016, vol.51, 3303-3310.

    Article  Google Scholar 

  10. M. Watanabe, M. Adachi, H. Fukuyama, J. Mater. Sci., 2017, vol.52, 9850-9858.

    Article  Google Scholar 

  11. M. Uchikoshi, J. Imaizumi, H. Shibuya, T. Kékesi, K. Miura, M. Isshiki, Thin solid films, 2004, vol.461, 94-98.

    Article  Google Scholar 

  12. L. J. Swartzendruber, V. P. Itkin, C. B. Alcock, J. Phase Equilib., 1991, vol.12, 288-312.

    Article  Google Scholar 

  13. Y. Baba, K. Sugioka, M. Kubo, T. Tsukada, K. Sugie, H. Kobatake, H. Fukuyama, J. Chem. Eng. Jpn., 2011, vol.44, 321-327.

    Article  Google Scholar 

  14. T. Tsukada, K. Sugioka, T. Tsutsumino, H. Fukuyama, H. Kobatake, Int. J. Heat Mass Trans., 2009, vol. 52, 5152-5157.

    Article  Google Scholar 

  15. K. Sugioka, T. Tsukada, H. Fukuyama, H. Kobatake, S. Awaji, Int. J. Heat Mass Trans., 2010, vol.53, 4228-4232.

    Article  Google Scholar 

  16. H. Kobatake, H. Khosroabadi, H. Fukuyama: Proc. e-Therm., 2010, pp. 122–24.

  17. T. Nishi, H. Shibata, H. Ohta, Y. Waseda, Metall. Mater. Trans. A, 2003, vol.34A, 2801-2807.

    Article  Google Scholar 

  18. O. I. Ostrovski, V. A. Eremachenko, V. M. Popov, V. A. Grigoryan, L. E. Kogtan, Zhurnal Fizicheskoi Khimii, 1980, vol.54, 1291-1295.

    Google Scholar 

  19. V. Y. Zinovyev, V. F. Polev, S. G. Taluts, G. P. Zinovyeva, S. A. Ilinykh, Phys. Metal. Metallography, 1986, vol.61, 85-92.

    Google Scholar 

  20. Y. Kita, Z. Morita, J. Non-Cryst. Solids, 1984, vol.61-62, 1079-1084.

    Google Scholar 

  21. G. Pottlacher, J. Non-cryst. Solids, 1999, vol.250-252, 177-181.

    Google Scholar 

  22. M. J. Assael, A. Chatzimichailidis, K. D. Antoniadis, W. A. Wakeham, M. L. Huber, H. Fukuyama, High Temp. High Press., 2017, vol.46, 391-416.

    Google Scholar 

  23. Y. Ono, T. Yagi, Trans. ISIJ, 1972, vol. 12, 314-316.

    Google Scholar 

  24. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens: The TPRC Data Series 1 Thermal Conductivity Metallic Elements and Alloys, 1970, p. 169.

  25. A. Seifter, G. Pottlacher, H. Jäger, G. Groboth, E. Kaschnitz, Berichte der Bunsengesellschaft für physikalische chemie, 1998, vol. 102, 1266-1271.

    Article  Google Scholar 

  26. A. M. Samarin, J. Iron Steel Inst., 1962, vol. 200, 95-101.

    Google Scholar 

  27. K. Mori, M. Kishimoto, T. Shimose, Y. Kawai, J. Inst. Met. Mater., 1975, vol. 39, 1301-1307.

    Google Scholar 

Download references

Acknowledgments

The authors thank Professor Hiroyuki Shibata and Associate professor Sohei Sukenaga (Tohoku Univ.) for their helpful discussions and critical comments. This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 26249113 and 18J11474.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manabu Watanabe or Hiroyuki Fukuyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, M., Adachi, M., Uchikoshi, M. et al. Thermal Conductivities of Fe-Ni Melts Measured by Non-contact Laser Modulation Calorimetry. Metall Mater Trans A 50, 3295–3300 (2019). https://doi.org/10.1007/s11661-019-05250-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05250-9

Navigation