Skip to main content

Advertisement

Log in

Sliding Wear Behavior of Spark Plasma-Sintered Cu–6 Wt Pct Cr Alloy at Room and Elevated Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Although dilute Cu-Cr alloys are frequently used for applications involving sliding contacts, their wear mechanism at elevated temperatures has rarely been explored. We fabricated a bulk Cu-6 wt pct Cr alloy using high-energy ball milling and spark plasma sintering, and systematically investigated its dry sliding wear behavior against 440C stainless steel at room temperature and 300 °C. The alloy had a heterogeneous microstructure consisting of coarse-grained Cu (average grain size: 1.5 µm) distributed into a nanocrystalline Cu-Cr matrix (average Cu grain size: 77 nm; Cr-rich precipitate size: 18 nm), which gave high strength and plasticity (ultimate compressive strength: 1020 MPa; strain-to-failure: 26.0 pct) at room temperature. At 300 °C, the strength was significantly reduced, the coefficient of friction and wear rate increased, and the dominant wear mode switched from adhesive wear to oxidative/abrasive wear. Uniformly distributed nanoscale Cr-rich and Cr oxide precipitates hindered severe plastic deformation near the sliding surface during wear at room temperature; at 300 °C, severe plastic deformation was observed, with elongated Cu grains and uniformly dispersed Cr-rich and Cr oxide nanoparticles. Formation of a discontinuous glaze layer consisting of equiaxed nanograins of Cu, Cu oxides, and Cr oxides resulted in severe abrasion-assisted wear, and reduced the wear resistance at 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G. Purcek, H. Yanar, O. Saray, I. Karaman, and H.J. Maier: Wear, 2014, vol. 311, pp. 149-58.

    Article  Google Scholar 

  2. I.S. Batra, G.K. Dey, U.D. Kulkarni, and S. Banerjee: J. Nucl. Mater., 2001, vol. 299, pp. 91-100.

    Article  Google Scholar 

  3. N. Takata, Y. Ohtake, K. Kita, K. Kitagawa, and N. Tsuji: Scripta Mater., 2009, vol. 60, pp. 590-93.

    Article  Google Scholar 

  4. H. Nagasawa and K. Kato: Wear, 1998, vol. 216, pp. 179-83.

    Article  Google Scholar 

  5. Q. Fang, Z.X. Kang, Y.W. Gan, and Y. Long: Mater. Des., 2015, vol. 88, pp. 8-15.

    Article  Google Scholar 

  6. G. Purcek, H. Yanar, D.V. Shangina, M. Demirtas, N.R. Bochvar, and S.V. Dobatkin: J. Alloy. Compd., 2018, vol. 742, pp. 325-33.

    Article  Google Scholar 

  7. R.K. Gautam, S. Ray, S.C. Sharma, S.C. Jain, R. Tyagi (2011) Wear, 271: 658-64.

    Article  Google Scholar 

  8. A.K. Shukla, R.S. Kumar, S.V.S.N. Murty, K. Mondal (2013) Mater. Sci. Eng. A 577: 36-42

    Article  Google Scholar 

  9. J.P. Tu, W.X. Qi, Y.Z. Yang, F.Liu, J.T. Zhang, G.Y. Gan, N.Y. Wang, X.B. Zhang, and M.S. Liu: Wear, 2001, vol. 249, pp. 1021-27.

    Article  Google Scholar 

  10. Y. Zhang, A.A. Volinsky, H.T. Tran, Z. Chai, P. Liu, B.H. Tian, Y. Liu (2016) Mater. Sci. Eng. A 650:248-53.

    Article  Google Scholar 

  11. N.Y. Tang, D.M. R. Taplin, and G.L. Dunlop: Mater. Sci. Technol., 1985, vol. 1, pp. 270-75.

    Article  Google Scholar 

  12. T. Fujii, H. Nakazawa, M. Kato, and U. Dahmen: Acta Mater., 2000, vol. 48, pp. 1033-45.

    Article  Google Scholar 

  13. F.X. Huang, J.S. Ma, H.L. Ning, Z.T. Geng, C. Lu, S.M. Guo, X.T. Yu, T. Wang, H. Li, and H.F. Lou: Scripta Mater., 2003, vol. 48, pp. 97-102.

    Article  Google Scholar 

  14. P. Liu, J. Su, Q. Dong, and H. Li: J. Mater. Sci. Technol., 2005, vol. 21, pp. 475-78.

    Google Scholar 

  15. H.T. Zhou, J.W. Zhong, X. Zhou, Z.K. Zhao, and Q.B. Li: Mater. Sci. Eng. A, 2008, vol. 498, pp. 225-30.

    Article  Google Scholar 

  16. J.H. Su, Q.M. Dong, P. Liu, H.J. Li, and B.X. Kang: Mater. Sci. Eng. A, 2005, vol. 392, pp. 422-26.

    Article  Google Scholar 

  17. Z.L. Zhang, J.M. Guo, G. Dehm, and R. Pippan: Acta Mater. 2017, vol. 138, pp. 42-51.

    Article  Google Scholar 

  18. J.M. Guo, J.L. Rosalie, R. Pippan, and Z.L. Zhang: Scripta Mater., 2017, vol. 133, pp. 41-44.

    Article  Google Scholar 

  19. A. Bachmaier, G.B. Rathmayr, M. Bartosik, D. Apel, Z. Zhang, and R. Pippan: Acta Mater., 2014, vol. 69, pp. 301-13.

    Article  Google Scholar 

  20. A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, and V.I. Kopylov: Acta Mater., 2002, vol. 50, pp. 1639-51.

    Article  Google Scholar 

  21. R. Mishnev, I. Shakhova, A. Belyakov, and R. Kaibyshev: Mater. Sci. Eng. A, 2015, vol. 629, pp. 29-40.

    Article  Google Scholar 

  22. K.X. Wei, W. Wei, F. Wang, Q.B. Du, I.V. Alexandrov, and J. Hu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1478-84.

    Article  Google Scholar 

  23. K.V. León, M.A. Muñoz-Morris, and D.G. Morris: Mater. Sci. Eng. A, 2012, vol. 536, pp. 181-89

    Article  Google Scholar 

  24. M. Kulczyk, B. Zysk, M. Lewandowska, K.J. Kurzydłowski: Phys. Status Solidi A, 2010, vol. 207, pp. 1136-38.

    Article  Google Scholar 

  25. C. Aguilar, V.D.P. Martinez, J. M. Palacios, S. Ordoñez, and O. Pavez: Scripta Mater., 2007, vol. 57, pp. 213-16.

    Article  Google Scholar 

  26. Q. Fang and Z.X. Kang: Powder Technol., 2015, vol. 270, pp. 104-11.

    Article  Google Scholar 

  27. S.H. Dong, C.L. Zhang, L.Y. Zhang, J. Cai, P. Lv, Y.X. Jin, and Q.F. Guan: J. Alloy. Compd., 2018, vol. 755, pp. 251-56.

    Article  Google Scholar 

  28. I. Lahiri and S. Bhargava: Powder Technol., 2009, vol. 189, pp. 433-38.

    Article  Google Scholar 

  29. G. Lee, E.A. Olevsky, C. Manière, A. Maximenko, O. Izhvanov, C. Back, and J. McKittrick: Acta Mater.,2018, vol. 144, pp. 524-33.

    Article  Google Scholar 

  30. K.B. Gerasimov, S.V. Mytnichenko, S.V. Pavlov, V.A. Chernov, and S.G. Nikitenko: J. Alloy. Compd., 1997, vol. 252, pp. 179-83.

    Article  Google Scholar 

  31. S. AsadiKouhanjani, A. ZareBidaki, and A. Akbari: J. Alloy. Compd., 2009, vol. 486, pp. 319-24.

    Article  Google Scholar 

  32. S. AsadiKouhanjani, A. ZareBidaki, M. Abedini, and N. Parvin: J. Alloy. Compd., 2009, vol. 480, pp. 505-09.

    Article  Google Scholar 

  33. W.X. Qi, J.P. Tu, F. Liu, Y.Z. Yang, N.Y. Wang, H.M. Lu, X.B. Zhang, S.Y. Guo, and M.S. Liu: Mater. Sci. Eng. A, 2003, vol. 343, pp. 89-96.

    Article  Google Scholar 

  34. J.F. Curry, T.F. Babuska, T.A. Furnish, P. Lu, D.P. Adams, A.B. Kustas, B.L. Nation, M.T. Dugger, M. Chandross, B.G. Clark, B. L. Boyce, C.A. Schuh, and N. Argibay: Adv. Mater., 2018, vol. 30, p. 1870242.

    Article  Google Scholar 

  35. X. Chen, Z. Han, X.Y. Li, and K. Lu: Sci. Adv., 2016, vol. 2, p.e1601942.

    Article  Google Scholar 

  36. D.A. Rigney: Wear, 2000, vol. 245, pp. 1-9.

    Article  Google Scholar 

  37. K.J. Chu, J. Zhou, and F.Z. Ren: Wear, 2018, vol. 414-415, pp. 251-61.

    Article  Google Scholar 

  38. J.R. Jiang, F.H. Stott, and M.M. Stack: Wear, 1995, vol. 181-183, pp. 20-31.

    Article  Google Scholar 

  39. F.H. Stott, D.S. Lin, G.C. Wood, and C.W. Stevenson: Wear, 1976, vol. 36, pp. 147-74.

    Article  Google Scholar 

  40. J. Jiang, F.H. Stott, and M.M. Stack: Wear, 1997, vol. 203, pp. 615-25.

    Article  Google Scholar 

  41. A. Pauschitz, M. Roy, and F. Franek: Tribol. Int., 2008, vol. 41, pp. 584-602.

    Article  Google Scholar 

  42. C. Rynio, H. Hattendorf, J. Klöwer, and G. Eggeler: Wear, 2014, vol. 315, pp. 1-10.

    Article  Google Scholar 

  43. E. Ma: Prog. Mater. Sci., 2005, vol. 50, pp. 413-509.

    Article  Google Scholar 

  44. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1-184.

    Article  Google Scholar 

  45. A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  Google Scholar 

  46. A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817-29.

    Article  Google Scholar 

  47. P. Hvizdoš, M. Besterci, and P. Kulu: High Temp. Mater. Process., 2011, vol. 30, p 573-77.

    Google Scholar 

  48. S. Mula, P. Sahani, S.K. Pratihar, S. Mal, and C.C. Koch: Mater. Sci.Eng. A, 2011, vol. 528, pp. 4348-56.

    Article  Google Scholar 

  49. P. Sahani, S. Mula, P.K. Roy, P.C. Kang, and C.C. Koch: Mater. Sci.Eng. A, 2011, vol. 528, pp. 7781-89.

    Article  Google Scholar 

  50. S. Bera, S.G. Chowdhury, W. Lojkowsky, and I. Manna: Mater. Sci. Eng. A, 2012, vol. 558, pp. 298-308.

    Article  Google Scholar 

  51. F.Z. Ren, W.W. Zhu, K.J. Chu, and C.C. Zhao: J. Alloy. Compd., 2016, vol. 676, pp. 164-72.

    Article  Google Scholar 

  52. G. Straffelini, L. Maines, M. Pellizzari, and P. Scardi: Wear, 2005, vol. 259, pp. 506-11.

    Article  Google Scholar 

  53. J. Don, T. C. Sun, and D. A. Rigney: Wear, 1983, vol. 91, pp. 191-99.

    Article  Google Scholar 

  54. F. Ren, S.N. Arshad, P. Bellon, R.S. Averback, M. Pouryazdan, and H. Hahn: Acta Mater., 2014, vol. 72, pp. 148-58.

    Article  Google Scholar 

  55. S. Kang: Wear, 1993, vol. 162-164, pp. 1123-28.

    Article  Google Scholar 

  56. A. Emge, S. Karthikeyan, and D.A. Rigney: Wear, 2009, vol. 267, pp. 562-67.

    Article  Google Scholar 

  57. W. Cai and P. Bellon: Acta Mater., 2012, vol. 60, pp. 6673-84.

    Article  Google Scholar 

  58. J.B. Singh, W. Cai, and P. Bellon: Wear, 2007, vol. 263, pp. 830-41.

    Article  Google Scholar 

  59. W. Cai and P. Bellon: Wear, 2013, vol. 303, pp. 602-10.

    Article  Google Scholar 

  60. I.A. Inman, S.R. Rose, and P.K. Datta: Wear, 2006, vol. 265, pp. 1592-1605.

    Article  Google Scholar 

  61. G.W. Stachowiak and A.W. Batchelor: in Engineering Tribology (Third Edition), ed. G.W. Stachowiak and A.W. Batchelor, eds., Butterworth-Heinemann, Burlington, 2006, pp. 573–93.

  62. F F.H. Stott: Tribol. Int., 1998, vol. 31, pp. 61-71.

    Article  Google Scholar 

  63. M.B. Peterson, S.F. Murray, and J.J. Florek: ASLE Trans., 1959, vol. 2, pp. 225-34.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51874204), and the Fundamental Research Program of Shenzhen (Grant Nos. JCYJ20170412153039309 and JCYJ20170307110418960).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuzeng Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 8, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Zhao, C., Zhu, W. et al. Sliding Wear Behavior of Spark Plasma-Sintered Cu–6 Wt Pct Cr Alloy at Room and Elevated Temperatures. Metall Mater Trans A 50, 3132–3147 (2019). https://doi.org/10.1007/s11661-019-05243-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05243-8

Navigation