Skip to main content
Log in

A Thermodynamic Perspective of the Composition Dependence of Bulk Modulus in Terms of Electron Density and Molar Volume

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The variation of bulk modulus with composition of alloy phases is a core issue in any thermodynamic theory of alloy formation. Though it emerges from fundamental theory that elastic property, especially the bulk modulus is crucially dependent on interstitial electron density (ρb) distribution and its variation with respect to alloy composition, a coherent thermodynamic treatment connecting bulk modulus with electron density together with its composition dependence, is still lacking. The present study addresses this issue for solid solution alloys. A phenomenological analysis of the composition dependence of bulk modulus (BT) of single phase alloys has been presented in terms of bonding charge density (ρb) and its corresponding change with atomic volume (V). This link is developed using the fundamental interrelationship existing between bulk modulus, electron density, and molar volume. The change in bonding charge density (Δρb) with composition (x) has been modeled using an exponential scaling relation with respect to the corresponding change in atomic volume (ΔV). This scaling relation is based on the concept of the universal binding energy relation, which in turn results in a simple exponential variation of bulk modulus with composition-induced change of atomic volume. It is also shown that a common functional representation namely, BT (V) ≈ Bo exp{C × (ΔV)}, can be obtained for the temperature, pressure, and composition dependence of bulk modulus in terms of corresponding changes in volume (ΔV). The constant C takes context-dependent meaning and values. The applicability of this exponential relation towards representing the effect of composition on bulk modulus has been satisfactorily demonstrated for many substitutional alloy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. [1] G. Simmons and H. Wang: Single crystal elastic constants and calculated aggregate properties: A handbook, II edition, 1971, MIT Press, Cambridge, Mass, pp.1-370.

    Google Scholar 

  2. [2]G. R. Speich, A. J. Schwoeble and W. C. Leslie: Metall. Trans., 1972, Vol.3, pp. 2031-2037.

    Article  Google Scholar 

  3. [3] W. F. Weston, H. M. Ledbetter and E. R. Naimon: Mater. Sci. Engg,. 1975, Vol. 20, pp. 185-194.

    Article  Google Scholar 

  4. [4] H. Wawra: Zeit. fur Metallkunde, 1978, Vol. 69, pp. 518-523.

    Google Scholar 

  5. R.F.S. Hearmon: in Landolt Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, vol. 11, K.-H. Hellwege, ed., Springer, Berlin, 1979, pp. 1–244.

  6. [6] Hassel Ledbetter: Cryogenics, 1982, Vol. 22, pp. 653-656.

    Article  Google Scholar 

  7. [7] H. M. Ledbetter, M. W. Austin and S. A. Kim: Mater. Sci. Engg., 1987, Vol.85, pp. 85-89.

    Article  Google Scholar 

  8. J. D. Bass: in Elasticity of minerals, glasses, and melts, in Mineral Physics and Crystallography: A Handbook of Physical Constants, vol. 2, T. J. Ahrens, AGU, Washington, 1995, pp. 45–63.

  9. T. Darling, A. Migliori, P. E. Armstrong, R. Vaidya, C. Scherer and T. Lowe: in Reports on the Measurement of Elastic Properties of 51XX Series of Steels for the Heat Treatment Distortion Project, Los Alamos Report, LA-UR-97, 1997, pp. 1–64.

  10. [10] Ulrich Bohnenkamp and Rolf Sandstrom: Steel Res., 2000, Vol. 71, pp. 94-99.

    Article  Google Scholar 

  11. H. Ledbetter and S. Kim: in Monocrystal Elastic Constants and Derived Properties of the Cubic and the Hexagonal Elements, in: Handbook of Elastic Properties of Solids, Liquids, and Gases, Volume II: Elastic Properties of Solids, M. Levy, H. Bass and R. Stern, eds., Academic Press, Boston, 2001, pp. 97–106.

  12. D.G. Isaak: in Handbook of Elastic Properties of Solids, Liquids, and Gases, Volume III: Biological and Organic Materials, Earth and Marine Sciences, M. Levy, H. Bass and R. Stern, eds., Academic Press, Boston, 2001, pp. 325–76.

  13. S. A. Kim and W. L. Johnson: Mater. Sci. Eng. A, 2007, Vol. 452-453, pp. 633-639.

    Article  Google Scholar 

  14. R Rajendran, V Petley and B Rehmer: J. Mater.: Des. Appl., 2012, Vol. 227, pp. 243-249.

    Google Scholar 

  15. Y.-L.-H. Di-Su, J.-Q. Liu, X.-G. Lu: in International Conference on Information, Science, Machinery, Materials and Energy (ICISMME) 2015, Atlantic Press, pp. 1840–50.

  16. W.M. de Jong, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C.K. Ande, S. van der Zwaag, J.J. Plata, C. Toher, S. Curtaralo, B. Ceder, K.A. Persson, and M. Asta: Sci. Data, 2015, vol. 12, pp. 191–201.

  17. K. Saravanan, V.M.J. Sharma, P.R. Narayanan, S.C. Sharma, and K.M. George: Mater. Sci. Forum, 2015, vol. 830–831, pp. 203–06.

  18. [18] J. Wachtman, W. Tefft and D. Lamm: Phys. Rev., 1961, Vol. 122, pp. 1754-1759.

    Article  Google Scholar 

  19. [19] O. L. Anderson: Phys. Rev., 1966, Vol. 144, pp. 553-557.

    Article  Google Scholar 

  20. [20] Y. P. Varshni: Phys. Rev. B, 1970, Vol. 2, pp. 3952-3955.

    Article  Google Scholar 

  21. [21] H. Ledbetter: Phys. Stat. Solidi B, 1994, Vol. 181, pp. 81-85.

    Article  Google Scholar 

  22. [22] H. Ledbetter: Mater. Sci. Engg. A, 2006, Vol. 442, pp. 31-34.

    Article  Google Scholar 

  23. O. L. Anderson: Equations of State for Solids in Geophysics and Ceramic Science, 1995, Oxford University Press, New York, pp. 1-383.

    Google Scholar 

  24. H Li, L Xu and C. Liu: J. Geophys. Res., 2005, Vol. 110, pp. 05203-1–05203-10.

    Article  Google Scholar 

  25. T. Hammerschmidt, I. A. Abrikosov, D. Alfe, S. G. Fries, L. Hoglund, M. H. G. Jacobs, J. Kobmann, X. G. Lu and G. Paul: Phys. Stat. Solidi B, 2014, vol. 251, pp. 81–96.

    Article  Google Scholar 

  26. Z.-K. Liu, H. Zhang, S. Ganeshan, Y. Wang and S. Mathaudhu: Scripta Mater., 2010, Vol. 63, pp. 686–91.

    Article  Google Scholar 

  27. [27] X. Wang, L. B. Liu, M. F. Wang, X. Shi, G. X. Huang and L. G. Zhang: CALPHAD, 2015, Vol. 48, pp. 89-94.

    Article  Google Scholar 

  28. [28] R Sandstrom and P. Korzhavyi: Can. Met. Quart., 2014, Vol. 53, pp. 282-291.

    Article  Google Scholar 

  29. [29] S. Sharafat, G.R. Odette and J. Blanchard: J. Nucl. Mater., 2009, Vol. 386-388, pp.896–899.

    Article  Google Scholar 

  30. [30] G. Grimvall: Thermophysical Properties of Materials, 2nd ed., North-Holland, Elsevier, Amsterdam, 1999, pp. 37-68.

    Google Scholar 

  31. H. Ledbetter: in Materials at Low Temperatures, R.P. Reed and A.F. Clark, eds., Am. Soc. Metals, Metals Park, 1983, pp. 1–45.

  32. J. Hafner: From Hamiltonian to Phase Diagrams, The Electronic and Statistical Mechanical Theory of sp-bonded Metals and Alloys, Springer-Verlag, Berlin, 1987, pp. 1–395.

  33. W.A. Harrison: Electronic Structure and the Properties of Solids, Dover, 1989, pp. 1–571.

  34. M. Palumbo, B. Burton, A. C. Silva, B. Fultz, B. Grabowski, G. Grimvall, B. Hallstedt, O. Hellman, B. Lindahl, A. Schneider, P. E. A. Turchi and W. Xiong: Phys. Stat. Solidi B, 2014, Vol. 251, pp. 14-32.

    Article  Google Scholar 

  35. P E A Turchi, I A Abrikosov, B Burton, S G Fries, G Grimvall, L Kaufman, P Korzhavyi, V R Manga, M Ohno, A Pisch, A Scott, W Zhang: Calphad, 2007, Vol. 31, pp. 4-27.

    Article  Google Scholar 

  36. [36] Zi-Kui Liu and Yi Wang: Computational Thermodynamics of Materials, Cambridge University Press, London, 2016, pp. 1-251.

    Book  Google Scholar 

  37. [37] D. Sh. Tsagareishvili, G. V. Tsagareishvili and M. Ch. Tushishvili: Diamond & Related Mater., 1996, Vol. 5, pp. 475-477.

    Article  Google Scholar 

  38. [38] O. L. Anderson and J. E. Nafe: J. Geophys. Res., 1965, Vol. 70, pp. 3951-3963.

    Article  Google Scholar 

  39. A. S. Verma: Phys. Stat. Solidi B, 2009, Vol. 246, pp. 345-353.

    Article  Google Scholar 

  40. [40] Chonghe Li, Ping Wu and Ping Wu: Chem. Mater., 2001, Vol. 13, 4642-4648.

    Article  Google Scholar 

  41. [41] Chonghe Li and Ping Wu: Chem. Mater., 2002, Vol. 14, 4833-4836.

    Article  Google Scholar 

  42. [42] F. Noguiera, C. Fiolhais and J. P. Perdew: Phys. Rev., B, 1999, Vol. 59, pp. 2570- 2578.

    Article  Google Scholar 

  43. S. Wacke, T. Gorecki, G. Gorecki and K. Ksiazek: J. Phys.: Conf. Ser., 2011, Vol. 289, pp. 012020-1–012020-4.

    Google Scholar 

  44. W. Siebke: Phys. Stat. Solidi A, 1981, Vol. 64, pp. 577-583.

    Article  Google Scholar 

  45. [45] Aimen E. Gheribi and Patrice Chartrand: Calphad, 2012, Vol. 39, pp. 70-79.

    Article  Google Scholar 

  46. [46] Cassie Marker, Shun-Li Shang, Ji-Cheng Zhao and Zi-Kui Liu: Comp. Mater. Sci., 2017, Vol. 140, pp.121-139.

    Article  Google Scholar 

  47. [47] Shang-Zhou Zhang, Hao Cui, Ming-Man Li, Hui Yu, Levente Vitos, Rui Yang, and Qing-Miao Hu: Mater. Design, 2016, Vol. 110, pp. 80-89.

    Article  Google Scholar 

  48. [48] Władysław Gąsior, Calphad, 2014, Vol. 44, pp. 119-128.

    Article  Google Scholar 

  49. J Wang, Y Du, S-L Shang, Z-K Liu and Y-W Li: J. Min. Metall. Sect. B, 2014, Vol. 50, pp. 37-44.

    Article  Google Scholar 

  50. H Zhang, M. P. J. Pukkinen, B Johansson, S Hertzman, L Vitos: Phys. Rev. B, 2010, Vol. 81, pp. 184105.

    Google Scholar 

  51. [51] Wenchong Zhou, Ryoji Sahara and Koichi Tsuchiya: J. Alloys Compd., 2017, Vol. 727, pp. 579-595.

    Article  Google Scholar 

  52. [52] Subramanian Raju and Saroja Saibaba: Metall. Trans. A, 2017, Vol. 48, pp. 3927- 3940.

    Article  Google Scholar 

  53. GB Helffrich and B Wood: Am. Miner, 1989, Vol. 74, pp. 1016-1022.

    Google Scholar 

  54. [54] V. S. Urusov and I. F. Kravchuk: Cryst. Res. Tech., 1983, Vol. 18, 629-636.

    Article  Google Scholar 

  55. [55] S. A. Serebrinsky, J. L. Gervasoni, J. P. Abriata and V. H. Ponce: J. Mater. Sci., 1998, Vol. 33, pp. 167-171.

    Article  Google Scholar 

  56. [56] J A Alonso and N. H. March: Electrons in Metals and Alloys, Academic press, London, 1989, pp. 1-603.

    Book  Google Scholar 

  57. [57] V. L. Moruzzi, J. Janak and A. R. Williams: Calculated electronic Properties of Metals, Pergamon, NY, 1978, pp. 1-275.

    Book  Google Scholar 

  58. D. Cheng, S. Wang, and H. Ye: Phys. Rev., B, 2001, Vol. 64, pp. 024107.

    Google Scholar 

  59. [59] D. G. Pettifor: Solid St. Phys., 1987, Vol.40, pp.43-92.

    Article  Google Scholar 

  60. [60] A. K. Niessen and A. R. Miedema, The Macroscopic Atom Model: An easy tool to predict thermodynamic quantities, in: H. Brodowsky and H.-J. Schaller (Eds.), Thermochemistry of Alloys, NATO ASI Series, Vol.286, Kluwer Academic Pub., Dordrecht, 1989, pp.29-54.

    Chapter  Google Scholar 

  61. [61] H. Yamana, J. Sheng, K. Kawamoto and H. Moriyama: J. Nucl. Mater., 2001, Vol. 294, pp.53-58.

    Article  Google Scholar 

  62. [62] Seung Am Cho: Trans. Jpn. Inst. Met., 1981, Vol. 22, pp. 643-652.

    Article  Google Scholar 

  63. [63] O. Johnson: J. Phys. Chem. Solids, 1981, Vol. 42, pp. 65-76.

    Article  Google Scholar 

  64. F. Perrot and M. Rasolt: J. Phys. Condens Matt., 1994, Vol. 6, pp. 1473-1482.

    Article  Google Scholar 

  65. K F Wojciechowski: Mod. Phys. Lett. B, 1998, Vol. 12, pp. 685-691.

    Article  Google Scholar 

  66. [66] Yoram Tal: Can. J. Chem., 1996, Vol. 74, pp. 870-874.

    Article  Google Scholar 

  67. W. Missoul: Phys. Stat. Solidi B, 1973, Vol. 58, pp. 767-773.

    Article  Google Scholar 

  68. [68] J. A. Alonso and N. H. March: Surf. Sci., 1985, Vol. 160, pp. 509-516.

    Article  Google Scholar 

  69. L. Sani, C. Petrillo and F. Sacchetti: Phys. Rev., B, 2014, Vol. 90, pp. 024207.

    Article  Google Scholar 

  70. [70] Stanislaw Halas and Tomasz Durakiewwicz: J. Phys. Condens. Matt., 1998, Vol. 10, pp. 10815-10826.

    Article  Google Scholar 

  71. [71] D. J. Gonsalez and J. A. Alonso: J. Physique, 1983, Vol. 44, pp. 229-234.

    Article  Google Scholar 

  72. [72] M. M. Sigalas, J. H. Rose, D. A. Papaconstantopoulous and H. B. Shore: Phys. Rev., B, 1998, Vol. 58, pp. 13438-13441.

    Article  Google Scholar 

  73. J. H. Rose, J Ferrante, and J.R. Smith: Phys. Rev. Lett., 1981, Vol. 47, pp. 675-678.

    Article  Google Scholar 

  74. [74] F. J. Blatt: Phys. Rev., 1957, Vol. 108, pp. 285-290.

    Article  Google Scholar 

  75. [75] R. Grover, I. C. Getting and G. C. Kennedy: Phys. Rev., B, 1973, Vol. 7, pp. 567- 571.

    Article  Google Scholar 

  76. [76] M. H. Jacobs and H. A. J. Oonk: Phys. Chem. Chem. Phys., 2000, Vol. 2, pp. 2641-2646.

    Article  Google Scholar 

  77. [77] Hengli Liu, Lizhu Song and Muyu Zhao: J. less common Met., 1990, Vol. 166, pp. 271-281.

    Article  Google Scholar 

  78. [78] A. Chopelas and R. Boehler: Geophys. Res. Lett., 1992, Vol. 19, pp. 1983-1086.

    Article  Google Scholar 

  79. [79] Anit K. Giri: Mater. Lett., 1993, Vol. 17, pp. 353-356.

    Article  Google Scholar 

  80. [80] G. B. Mitra and T. Chattopadhyay: Acta Cryst A, 1972, Vol. 28, pp. 179-183.

    Article  Google Scholar 

  81. [81] C. G. Shirley: Acta Cryst, A, 1975, Vol. A31, pp. 853-854.

    Article  Google Scholar 

  82. J. Grammatikakis and A.N. Papathanassiou: Phys. Stat. Solidi, A, 1996, Vol. 155, pp. 365–70.

  83. [83] P. A. Varotsos and K. D. Alexopoulos: Thermodynamics of point defects and their relation to bulk properties, North Holland, Amsterdam, 1986, pp. 1-463.

    Google Scholar 

  84. [84] Vassiliki Katsika Tsigourakou: Pramana, 2011, Vol. 77, pp. 689-695.

    Article  Google Scholar 

  85. G Bozzolo, J Ferrante and J. R. Smith: Phys. Rev., B, 1992, Vol. 45, pp. 493-496

    Article  Google Scholar 

  86. [86] J. R. Smith, T. Perry, A. Banerjea, J. Ferrante, and G. Bozzolo: Physical Review B, 1991, Vol. 44, pp. 6444–6445.

    Article  Google Scholar 

  87. G. Bozzolo, J. Garces, H. Mosca, P. Gargaro, R.D. Noebe and P. Abel: in Applied Computational Materials Modelling Theory, Simulation, Experiment, G. Bozzolo, R. D. Noebe and P. Abel, eds., Springer, Berlin, 2007, pp. 215–54.

  88. J. T. Lenkkeri and E. E. Lahteenkorva: J. Phys. F, 1978, Vol. 8, pp. 1643-1651.

    Article  Google Scholar 

  89. [89] S. G. Epstein and O. N. Carlsson: Acta Metall., 1965, Vol. 13, pp. 487-491.

    Article  Google Scholar 

  90. [90] W. C. Hubbell and F. R. Brotzen: J. Appl. Phys., 1972, Vol. 43, pp. 3306-3312.

    Article  Google Scholar 

  91. [91] C. E. Anderson and F. R. Brotzen: J. Appl. Phys., 1982, Vol. 53, pp. 292-298.

    Article  Google Scholar 

  92. [92] E. Walker and M. Peter: J. Appl. Phys., 1977, Vol. 48, pp. 2820-2827.

    Article  Google Scholar 

  93. [93] D. A. Armstrong and B. L. Mordike: J. Less Common Met., 1970, Vol. 22, pp. 265- 274.

    Article  Google Scholar 

  94. D. Fargeot, J. C. Glandus, and P. Boch: Phys. Stat. Solidi A, 1976, Vol. 35, pp. 687-695.

    Article  Google Scholar 

  95. [95] L. S. Cain and J. F. Thomas: Phys. Rev. B, 1973, Vol. 8, pp.5372-5380.

    Article  Google Scholar 

  96. [96] L. S. Cain and J. F. Thomas: Phys. Rev. B, 1971, Vol. 4, pp.4245-4255.

    Article  Google Scholar 

  97. [97] A. Landa: J. Alloys Compd., 2009, Vol. 478, pp. 103-110.

    Article  Google Scholar 

  98. [98] P. E. A. Turchi: JOM, 2014, Vol. 66, pp. 375-388.

    Article  Google Scholar 

  99. [99] K. W. Katahara, M. H. Manghnani and E. S. Fisher: J. Phys. F, 1979, Vol. 9, pp. 773-790.

    Article  Google Scholar 

  100. [100] D. L. Davidson and F. R. Brotzen: J. Appl. Phys., 1968, Vol. 39, pp. 5768- 5775.

    Article  Google Scholar 

  101. A.G. Knapton: J. Inst. Metals, 1958/59, Vol. 87, pp. 62–64.

  102. J. H. Brophy, P. Schwarzkopf and J. Wulff: Trans. Met. Soc AIME, 1960, Vol. 218, pp. 910-914.

    Google Scholar 

  103. [103] R. Pietrokowski and P. Duwez: Trans. AIME, 1952, Vol.194, pp.627-630.

    Google Scholar 

  104. M. C. Gao, Y. Suzuki, H. Schweiger, O. N. Dogan, J. Hawk and M. Widom: J. Phys.: Condens. Matter, 2013, Vol. 25, pp. 075402.

    Google Scholar 

  105. [105] W. B. Pearson: A Handbook of Lattice Spacings of Metals and Alloys, Pergamon Press, London, 1958, pp. 1-1054.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. A. K. Bhaduri, Director, IGCAR and Dr. G. Amarendra, Director, Metallurgy & Materials Group for their sustained support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Raju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, S. A Thermodynamic Perspective of the Composition Dependence of Bulk Modulus in Terms of Electron Density and Molar Volume. Metall Mater Trans A 50, 3320–3329 (2019). https://doi.org/10.1007/s11661-019-05238-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05238-5

Navigation