Skip to main content
Log in

Extending the Ramberg–Osgood Relationship to Account for Metal Porosity

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article proposes an extended Ramberg–Osgood (R–O) relationship accounting for the effect of porosity on porous metal behavior under tension. Initially, microstructural unit cells satisfying continuity boundary conditions were employed to account for pore intensity and its effect on elastic-plastic behavior. Results obtained from micromechanical simulations coupled with regression analyses were utilized to express elastic-plastic behavior as a function of porosity. Therefore, mathematical relationships were successfully developed to extend the R–O model to account for porosity. Finally, for validation and assessment of the developed relation, analytical and macromechanical finite element (FE) results were compared with those of testing. Comparisons at low-porosity range, i.e., < 10 pct, proved to have excellent agreement. It is concluded that multiscale FE analyses conducted successively on the micro- and macro-scales efficiently delineated the effect of porosity on mechanical behavior. Moreover, these analyses enabled extending the R–O relationship for accurate modeling of porous metals with low-range porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings are within the manuscript.

References

  1. M. Attaran: Bus. Horiz., 2017, vol. 60, pp. 677–88.

    Article  Google Scholar 

  2. W.E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917–28.

    Article  Google Scholar 

  3. P.G. Allison, H. Grewal, Y. Hammi, H.R. Brown, W.R. Whittington, and M.F. Horstemeyer: J. Eng. Mater. Technol., 2013, vol. 135, p. 041008.

    Article  Google Scholar 

  4. J.A. Choren, S.M. Heinrich, and M.B. Silver-Thorn: J. Mater. Sci., 2013, vol. 48, pp. 5103–12.

    Article  Google Scholar 

  5. N. Soro, L. Brassart, Y. Chen, M. Veidt, H. Attar, and M.S. Dargusch: Mater. Sci. Eng. A, 2018, vol. 725, pp. 43–50.

    Article  Google Scholar 

  6. H. Zaharin, A. Abdul Rani, F. Azam, T. Ginta, N. Sallih, A. Ahmad, N. Yunus, T. Zulkifli, H.A. Zaharin, A.M. Abdul Rani, F.I. Azam, T.L. Ginta, N. Sallih, A. Ahmad, N.A. Yunus, and T.Z.A. Zulkifli: Materials, 2018, vol. 11, p. 2402.

    Article  Google Scholar 

  7. I. Gibson, D. Rosen, and B. Stucker: Rapid Manuf. Assoc., 2013, pp. 10–2.

  8. B.A. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pirling, M. Hofmann, and D.J. Jarvis: Mater. Des., 2016, vol. 89, pp. 559–67.

    Article  Google Scholar 

  9. R.A. Hardin and C. Beckermann: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, vol. 44, pp. 5316–32.

    Article  Google Scholar 

  10. F. Wang, S. Williams, P. Colegrove, and A.A. Antonysamy: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, vol. 44, pp. 968–77.

    Article  Google Scholar 

  11. Y.J. Cao, W.Q. Shen, J.F. Shao, and N. Burlion: Eur. J. Mech. / A Solids, 2018, vol. 72, pp. 407–23.

    Article  Google Scholar 

  12. R.A. Hardin and C. Beckermann: in Proceedings of the 65th SFSA technical and Operating Conference, Steel Founders’ Society of America, Chicago, IL, 2011.

  13. S.J. Polasik, J.J. Williams, and N. Chawla: 2002, vol. 33, pp. 73–81.

    Google Scholar 

  14. J.M. Dewey: J. Appl. Phys., 1947, vol. 18, pp. 578–81.

    Article  Google Scholar 

  15. J.N. GOODIER: T. A. S. M. E., 1933, vol. 55, p. 39.

  16. D.P.H. HASSELMAN: J. Am. Ceram. Soc., 1962, vol. 45, pp. 452–3.

    Article  Google Scholar 

  17. D.P.H. HASSELMAN: J. Am. Ceram. Soc., 1963, vol. 46, pp. 564–5.

    Article  Google Scholar 

  18. K.K. Phani: J. Mater. Sci. Lett., 1986, vol. 5, pp. 747–50.

    Article  Google Scholar 

  19. C.W. Bert: J. Mater. Sci., 1985, vol. 20, pp. 2220–4.

    Article  Google Scholar 

  20. R.M. SPRIGGS: J. Am. Ceram. Soc. Notes, 1961, vol. 28, pp. 1960–1.

    Google Scholar 

  21. J.P. Panakkal, H. Willems, and W. Arnold: J. Mater. Sci., 1990, vol. 25, pp. 1397–402.

    Article  Google Scholar 

  22. F.P. KNUDSEN: J. Am. Ceram. Soc., 1959, vol. 42, pp. 376–87.

    Article  Google Scholar 

  23. A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, p. 2.

    Article  Google Scholar 

  24. V. Tvergaard and A. Needleman: Acta Metall., 1984, vol. 32, pp. 157–69.

    Article  Google Scholar 

  25. Abaqus Documentation, Dassault Systèmes, Providence, Rhode Island, 2014.

    Google Scholar 

  26. A. Schiavone, G. Abeygunawardana-Arachchige, and V. V. Silberschmidt: Acta Mech., 2016, vol. 227, pp. 203–15.

    Article  Google Scholar 

  27. Y. Oh, H. Nam, Y. Kim, and N. Miura: Int. J. Press. Vessel. Pip., 2018, vol. 159, pp. 35–44.

    Article  Google Scholar 

  28. J. Oliver, M. Caicedo, A.E. Huespe, J.A. Hernández, and E. Roubin: Comput. Methods Appl. Mech. Eng., 2017, vol. 313, pp. 560–95.

    Article  Google Scholar 

  29. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe: Acta Mater., 2010, vol. 58, pp. 1152–211.

    Article  Google Scholar 

  30. A.A. Gusev: J. Mech. Phys. Solids, 1997, vol. 45, pp. 1449–59.

    Article  Google Scholar 

  31. T. Mori and K. Tanaka: Acta Metall., 1973, vol. 21, pp. 571–4.

    Article  Google Scholar 

  32. K. Miled, K. Sab, and R. Le Roy: Mech. Res. Commun., 2011, vol. 38, pp. 131–5.

    Article  Google Scholar 

  33. S.L. Omairey, P.D. Dunning, and S. Sriramula: Eng. Comput., 2018, vol. 0, pp. 1–11.

  34. A. Trofimov, S. Abaimov, I. Akhatov, and I. Sevostianov: Int. J. Eng. Sci., 2018, vol. 123, pp. 117–26.

    Article  Google Scholar 

  35. S.A. Elnekhaily and R. Talreja: Compos. Sci. Technol., https://doi.org/10.1016/j.compscitech.2017.11.017.

  36. S.J. Hollister and N. Kikuchi: Comput. Mech., 1992, vol. 10, pp. 73–95.

    Article  Google Scholar 

  37. L.E.. Dæhli, J. Faleskog, T. Børvik, and O.S. Hopperstada: Procedia Struct. Integr., 2016, vol. 2, pp. 2535–42.

    Article  Google Scholar 

  38. L.E. Bryhni Dæhli, J. Faleskog, T. Børvik, and O.S. Hopperstad: Eur. J. Mech. A/Solids, 2017, vol. 65, pp. 360–83.

    Article  Google Scholar 

  39. M. Eudier: Otolaryngol. Neck Surg., 1962, vol. 9, pp. 278–90.

    Google Scholar 

  40. R.E. FRYXELL and B.A. CHANDLER: J. Am. Ceram. Soc., 1964, vol. 47, pp. 283–91.

    Article  Google Scholar 

  41. D.P.H. HASSELMAN and R.M. FULRATH: J. Am. Ceram. Soc., 1964, vol. 47, pp. 52–3.

    Article  Google Scholar 

  42. W. Ramberg and W.R. Osgood: Description of Stress-Strain Curves by Three Parameters, 1943.

  43. H. Ghayoor, S. V. Hoa, and C.C. Marsden: Compos. Part B Eng., https://doi.org/10.1016/j.compositesb.2017.09.009.

  44. X. Deng, G. Piotrowski, N. Chawla, and K.S. Narasimhan: 2008, vol. 491, pp. 19–27.

    Google Scholar 

  45. N. Chawla, J.J. Williams, and R. Saha: 2003, vol. 2, pp. 215–27.

    Article  Google Scholar 

  46. R.A. Hardin and C. Beckermann: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, vol. 38A, pp. 2992–3006.

    Article  Google Scholar 

  47. J.R. Nimmo: Encycl. Soils Environ., 2004, pp. 295–303.

  48. N. Chawla and X. Deng: Mater. Sci. Eng. A, 2005, vol. 390, pp. 98–112.

    Article  Google Scholar 

  49. R.I. Stephens, J.J. Horn, D.D. Poland, and E.A. Sager: Eff. Prod. Qual. Des. Criteria Struct. Integrity, STP1337-EB, 1998, pp. 72–101.

  50. J.W. Cain: Mol. Life Sci., 2017, pp. 1–7.

Download references

Acknowledgments

This work is sponsored by the President’s Doctoral Student Investment Fund (PDSIF) at Memorial University of Newfoundland and Natural Sciences and Engineering Research Council of Canada (NSERC) and Discovery Grant Program (NSERC DG No. 210415). This support is gratefully acknowledged.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Elruby.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 12, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elruby, A.Y., Nakhla, S. Extending the Ramberg–Osgood Relationship to Account for Metal Porosity. Metall Mater Trans A 50, 3121–3131 (2019). https://doi.org/10.1007/s11661-019-05236-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05236-7

Navigation