Skip to main content
Log in

Effect of Nitrogen on the Fatigue Crack Growth Behavior of 316L Austenitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fatigue crack growth (FCG) behavior of 316L austenitic stainless steels (SSs) is studied as a function of nitrogen concentration and load ratios, R. Addition of nitrogen to austenitic SSs, in general, improves many of its properties. Austenitic SSs are known to undergo deformation-induced martensitic transformation (DIMT), which can influence their mechanical properties. DIMT occurring near the crack tip can improve the crack growth resistance under monotonic and cyclic loads. Nitrogen, however, stabilizes the austenite inhibiting or retarding DIMT, thereby reducing the toughness. The present detailed study was undertaken to evaluate the effect of nitrogen concentration on the FCG behavior of this steel at room temperature at different load ratios. The crack growth data are analyzed using the unified approach based on the two-parametric nature of fatigue, developed by the one of the authors. Crack growth trajectory maps were constructed using the above approach. These trajectory maps show how the material resistance to crack growth changes with increasing stress intensity factor and nitrogen content. The results are compared with the crack growth trajectories derived using the published crack growth data for 304 austenitic SSs known to show DIMT. The comparison indicates that the results of the present study can be explained with transformation toughening, albeit at a reduced rate compared with nitrogen-free alloys. Fractographic and transmission electron microscopy results are also consistent with the above conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. T. Angel, J. Iron Steel Inst. 1954, vol. 138, pp. 165–174.

    Google Scholar 

  2. F.D. Fisher, E. R. Oberaigner, K. Tanaka and F. Nishimura, Acta Metall. Mater. 1998, vol. 40, pp. 1703–1716.

    Google Scholar 

  3. F. D. Fisher, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud and T. Antretter, Int. J. Plasticity, 2000, Vol. 16, pp. 723–748.

    Article  Google Scholar 

  4. I. Tamura, Metal Science, 1982, vol. 16, pp. 245-253.

    Article  Google Scholar 

  5. C. Müller-Bollenhagen, M. Zimmermann and H.-J.Christ, Int. J Fatigue, 2010, vol. 32 pp. 936–942.

    Article  Google Scholar 

  6. R. J. H. Hannink, P. M. Kelly and B.C. Muddle, J. Am Ceram Soc., 2000, vol. 83, pp. 461-487.

    Article  Google Scholar 

  7. G. B. Olson and M. Cohen, J. Less-Common Metals, 1972, vol. 28 pp.107-18

    Article  Google Scholar 

  8. S. Chatterjee and H. K. D. H. Bhadeshia, Mater. Sci. Tech., 2017, vol. 23, pp. 1101-1104.

    Article  Google Scholar 

  9. J.W. Hutchinson, Theoretical and Appl. Mech., 1989, pp.139-144,

    Book  Google Scholar 

  10. A. G. Evans and R. M. Cannon, Acta Met., 1981, vol. 34, pp. 2435-2441.

    Article  Google Scholar 

  11. H. Shaikh, T. Anita, R. K. Dayal and H. S. Khatak, Corr. Sci., 2010, vol. 52, pp. 1146–1154

    Article  Google Scholar 

  12. M. O. Speidel, Mat-wiss. U. Werkstoiftech., 2006, vol. 37, pp. 875-880.

    Article  Google Scholar 

  13. Z. Mei and Jr. J. W. Morris, Metall, Trans., 1990, vol. 21, pp. 3137–3152.

    Article  Google Scholar 

  14. V. Ganesan, M. D. Mathew and K. Bhanu Sankara Rao, Mater. Sci. Technol., 2009, vol. 25, pp. 614-618.

    Article  Google Scholar 

  15. G. Sasikala, M. D. Mathew, K. Bhanu Sankara Rao and S. L. Mannan, Metall. Trans., 2000, vol. 31, pp. 1175–85.

    Article  Google Scholar 

  16. G. V. Prasad Reddy, R. Sandhya, K. Bhanu Sankara Rao and S. Sankaran, Procedia Eng., 2010, vol. 2, pp. 2181-2188.

    Article  Google Scholar 

  17. M. Nani Babu, B. Shashank Dutt, S. Venugopal, G. Sasikala, Shaju K. Albert, A. K. Bhaduri and T. Jayakumar, Proc. Eng., 2013, vol. 55, pp. 716–721.

    Article  Google Scholar 

  18. M. Nani Babu, G. Sasikala and K. Sadananda, Mater. Sci. Eng., 2018, vol. 726, pp. 18-20.

    Article  Google Scholar 

  19. A.K. Vasudevan, K. Sadananda and N. Louat, Mater. Sci. Eng., 1994, vol. 188, pp. 1–22.

    Article  Google Scholar 

  20. K. Sadananda, A.K. Vasudevan and R.L. Holtz, Int. J. Fatigue, 2001, vol. 23, pp. 277-286.

    Article  Google Scholar 

  21. K. Sadananda and A. K. Vasudevan, Fatigue & Frac. Eng. Maters & Struct., 2003, vol. 26, pp. 835-845

    Article  Google Scholar 

  22. K. Sadananda, S. Sarkar, D. Kujawski and A. K. Vasudevan, Int. J Fatigue, 2009, vol. 31, pp. 1648–1659

    Article  Google Scholar 

  23. J. Goodman, J, ‘Mechanics Applied to Engineering’, Longmans, London, 1899.

    Google Scholar 

  24. W. Elber: in Damage Tolerance in Aircraft Design, ASTM STP 486, 1971, pp. 230–42.

  25. N. Louat, K. Sadananda, M. Duesbery and A. K.Vasudevan, Metall. Trans., 1993, vol. 24, pp. 2225–2232.

    Article  Google Scholar 

  26. J. Weertman, Phil. Mag., 1981, vol. 43, pp. 1103-1123

    Article  Google Scholar 

  27. K. Sadananda and D.N. Ramaswamy, Phil. Mag., 2001, vol. 5, pp. 1283-1303.

    Article  Google Scholar 

  28. J. Toribio and V. Kharin, Int. J Fatigue, 2013, vol. 50, pp. 72–82.

    Article  Google Scholar 

  29. D. Kujawski and S. Stoychev, Int. J. Fatigue, 2007, vol. 29, pp. 1744-1750.

    Article  Google Scholar 

  30. C. Laird: in Fatigue Crack Propagation, ASTM Special Technical Publication, American Society of Testing and Materials, Philadelphia, PA, 1967, p. 131.

  31. R. J. Cooke, P. E. Irving, G. S. Booth, and C. J. Beevers, Engg. Fract. Mech., 1975, vol. 69, pp. 69–72

    Article  Google Scholar 

  32. K. Sadananda, A. K. Vasudevan, and I. W. Kang, Acta Mater., 2003, vol. 51, pp. 3399-3414

    Article  Google Scholar 

  33. J. B. Vogt, J. Foct, C. Regnard, G. Robert, and J. Dhers, Metall. Trans., 1991, vol. 22, pp. 2385-2392

    Article  Google Scholar 

  34. P. Hedström and J. Odqvist: in Stainless Steel: Microstructure, Mechanical Properties and Methods of Application, Nova Science Publishers, Eds. A. Pramanik, A.K. Basak, 2015

    Google Scholar 

  35. J. Talonen, and H. Hänninen, Acta Mater., 2007, vol. 55, pp. 6108-6118

    Article  Google Scholar 

  36. S. Kibey, J. B. Liu, M. J. Curtis, DD. Johnson, and H. Sehitoglu, Acta Mater, 2006, vol. 54, pp. 2991–3001

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Associate Director MEG, Director MMG and Director, IGCAR, Kalpakkam, India, for constant support and encouragement. They also acknowledge Mr. Syed Meer Kaleem for experimental assistance. We wish to acknowledge Dr. Amrita Pandian (MSG) and Dr. B. B. Lahiri (MMG) for providing TEM and MFM facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nani Babu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 8, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nani Babu, M., Sasikala, G. & Sadananda, K. Effect of Nitrogen on the Fatigue Crack Growth Behavior of 316L Austenitic Stainless Steels. Metall Mater Trans A 50, 3091–3105 (2019). https://doi.org/10.1007/s11661-019-05225-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05225-w

Navigation