Skip to main content
Log in

Influence of SiC Content on Microstructure and Tribological Properties of Friction Stir-Processed SiC/AA5083 Surface Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work aims to produce silicon carbide (SiC) particles-reinforced AA5083 surface composites through friction stir processing (FSP). The influence of SiC content on the microstructure and tribological properties of the friction stir-processed (FSPed) AA5083/SiC surface composites was investigated. The results reveal that the distribution of SiC particles within the stirred zone was homogeneous, irrespective of location, and SiC particle volume fraction. Good SiC/AA5083 interfacial bonding was obtained for all surface composites with refined grains. Electron backscattered diffraction results revealed that the stir zones comprised dynamically recrystallized, fine-grained, and equiaxed microstructures. Transmission electron microscopy revealed that dislocations rearranged to form high-angle grain boundaries upon dynamic recrystallization. The worn surface showed that an increase in SiC volume fraction transforms the wear from severe plowing, and delamination to light abrasive wear. The surface composites showed a substantial decrease in wear rate with an increase in SiC volume fraction due to the homogeneous distribution of SiC particles, grain refinement, and improved hardness. The wear debris of AA5083 alloy showed large flakes as a sign of severe plastic deformation whereas, surface composite samples comprised of fine wear debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge: Mater.Sci.Eng.A, 2000, vol. 280, pp. 37–49.

    Article  Google Scholar 

  2. G.S. Cole and A. M. Sherman: Mater. Charact, 1995, vol. 35, pp. 3–9.

    Article  Google Scholar 

  3. G. Lucadamo, N.Y.C. Yang, C.S. Marchi, and E.J. Lavernia: Mater.Sci.Eng.A, 2006, vol. 430, pp. 230–41.

    Article  Google Scholar 

  4. D.Y. Maeng, J.H. Lee, and S.I. Hong: Mater.Sci.Eng.A, 2003, vol. 357, pp. 188–95.

    Article  Google Scholar 

  5. L.D. Hefti: J. Mater. Eng. Perform, 2007, vol. 16, pp. 136–41.

    Article  Google Scholar 

  6. S.J. Hosseinipour: Mater.Des, 2009, vol. 30, pp. 319–22.

    Article  Google Scholar 

  7. K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, and L. Froyen: J. Mater. Process. Technol, 2003, vol. 142, pp. 738–43.

    Article  Google Scholar 

  8. K. Amouri, S. Kazemi, A. Momeni, and M. Kazazi: Materials Science and Engineering A, 2016, vol. 674, pp. 569–78.

    Article  Google Scholar 

  9. Y.H. Celik and K. Secilmis: Adv. Powder Technol, 2017, vol. 28, pp. 2218–24.

    Article  Google Scholar 

  10. P.K.Mandal and P.S.Robi: Materials Science and Engineering A, 2018, vol. 11, pp. 99-111.

    Article  Google Scholar 

  11. H.R. Stock, B. Kohler, H. Bomas and H.W. Zoch: Mater.Des,2010, vol. 31, pp. s76-s81.

    Article  Google Scholar 

  12. M. Roshani, A.S. Rouhaghdam, M Alifkhazraei, and A.H.Astaraee: Surf. Coat. Technol, 2017, vol. 310, pp.17-24.

    Article  Google Scholar 

  13. B. Enders, S. Kraub, K. Baba and G.K. Wolf: Surf.Coat.Technol,1995,vol. 74-75, pp. 959-65.

    Article  Google Scholar 

  14. A. Forn, J.A. Picas, and M.J. Simon: J. Mater. Process. Technol, 2003, vol. 143-144, pp.52-57.

    Article  Google Scholar 

  15. Q. Chen, Z. Jiang, S. Tang, W. Dong, Q. Tong, and W. Li: Appl Surf Sci,2017,vol. 423, pp.939-50.

    Article  Google Scholar 

  16. H.Wang, Q.Zhao, H.Wang, W.Cui, and X. Yuan: Surf.Coat.Technol,2017,vol. 319, pp.88-94.

    Article  Google Scholar 

  17. R.S.Mishra, M.W.Mahoney, S.X.McFadden, N.A.Mara, and A.K.Mukherjee: Scr.Mater, 1999, vol. 42, pp. 163-68.

    Article  Google Scholar 

  18. S. Sahraeinejad, H. Izadi, M. Haghshenas, and A.P. Gerlich: Mater. Sci. Eng. A, 2015, vol.626, pp. 505–13.

    Article  Google Scholar 

  19. Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3323–36.

    Article  Google Scholar 

  20. F. Khodabakhshi, A. Simchi, A. Kokabi, M. Nosko, and P. Svec: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4073–88.

    Article  Google Scholar 

  21. X. Cao, Q. Shi, D. Liu, Z. Feng, Q. Liu, and G. Chen: Composites Part B, 2018, vol. 139, pp. 97–105.

    Article  Google Scholar 

  22. R. Prado, L. Murr, K. Soto, and J. McClure: Mater. Sci. Eng. A 2003, vol. 349, pp. 156–65.

    Article  Google Scholar 

  23. V.K.S. Jain, P.M. Muhammed, S. Muthukumaran, and S.P.K. Babu: Trans. Indian. Inst. Met, 2018, vol.71(6), pp. 1519-1529.

    Article  Google Scholar 

  24. G. Huang, W. Hou, and Y. Shen: Mater. Charact, 2018, vol. 138, pp. 26–37.

    Article  Google Scholar 

  25. A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly: Recrystallization and Related Annealing Phenomena, Second Edition, 2004, pp. 415–628.

  26. T.Sakai, A.Belyakov, R.Kaibyshev, H.Miura, and J.J.Jonas: Prog. Mater Sci,2014,vol.60,pp.130-207.

    Article  Google Scholar 

  27. B.Wang, B.Lei, J.Zhu, Q.Feng, L.Wang, and D.Wu: Mater.Des,2015, vol. 87, pp.593-599.

    Article  Google Scholar 

  28. Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda: Mater. Sci. Eng. A, 2003, vol. 354, pp. 298–305.

    Article  Google Scholar 

  29. KV. Jata, and SL. Semiatin: Scr. Mater, 2000, vol. 43, pp. 743–749.

    Article  Google Scholar 

  30. D. Yadav, R. Bauri, Mater. Sci. Eng. A, 2012, vol. 539, pp.85–92.

    Article  Google Scholar 

  31. T.R. McNelley, S. Swaminathan, and J.Q. Su: Scr. Mater, 2008, vol. 58, pp. 349–54.

    Article  Google Scholar 

  32. M. Roy, B Venkataraman, VV Bhanuprasad, YR Mahajan, and G Sundararajan: Metall. Mater. Trans. A, 1992, vol. 23, pp. 2833–47.

    Article  Google Scholar 

  33. S. Soleymani, A. Abdollah-zadeh, and S.A. Alidokht: Wear, 2012, vol. 278–279, pp. 41–47.

    Article  Google Scholar 

Download references

Acknowledgments

The author Vikram Kumar S. Jain, acknowledges Department of Science & Technology, Govt. of India for sponsoring him to pursue Ph.D. under INSPIRE Fellowship (DST/INSPIRE Fellowship/2015/IF150488). The authors acknowledge the use of National Facility of Texture & OIM, IIT Bombay for EBSD studies. The authors thank Dr. Devinder Yadav, Assistant professor, IIT Patna for useful discussion of the manuscript. The authors also acknowledge Dr. Satish V Kailas, Professor, IISc Bengaluru, for providing access to 3D surface profilometer facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 9, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V.K.S., Muthukumaran, S. Influence of SiC Content on Microstructure and Tribological Properties of Friction Stir-Processed SiC/AA5083 Surface Composites. Metall Mater Trans A 50, 2933–2944 (2019). https://doi.org/10.1007/s11661-019-05219-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05219-8

Navigation