Skip to main content
Log in

Phase-Equilibrium Investigation of the Al-Cr-Er Ternary System at 773 K (500 °C)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Phase relations in the Al-Cr-Er ternary system at 773 K (500 °C) were investigated by means of powder X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscope equipped with energy dispersive spectrometer (SEM-EDS). An isothermal section at this temperature was experimentally constructed covering the whole concentration range. Two ternary compounds, namely, Al8Cr4Er and Al43Cr4Er6 were confirmed to exist at this temperature. The results show that there were 15 single-phase regions, 28 two-phase regions, and 14 three-phase regions in the studied isothermal section. The solubility of Er in intermediate phases (i.e., Al7Cr, Al9Cr4, Al8Cr5, and AlCr2) at the Al-Cr side is lower than 1 at. pct, whereas the solubility of Cr in Al-Er binary intermetallic (except the Al3Er phase) is about 1 to 3 at. pct. In addition, combining DSC results with SEM-EDS analysis, it is found that Al17Er2 phase does not exist in the present experimental condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller: Mater. Sci. Eng. A, 2000, vol. 280, pp. 102–07.

    Article  Google Scholar 

  2. A. May, M.A. Belouchrani, S. Taharboucht, A. Boudras: Procedia Engineering, 2010, vol. 2(1), pp. 1795–1804.

    Article  Google Scholar 

  3. H.C. Fang, H. Chao, K.H. Chen, Mater. Sci. Eng. A, 2014, vol. 610, pp. 10–16.

    Article  Google Scholar 

  4. W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, eighth ed., Elsevier, Oxford, 2004.

    Google Scholar 

  5. D. Vojtech, J. Verner, J. Serak, F. Simancik, M. Balog, J. Nagy: Mater. Sci. Eng. A, 2007, vol. 458, pp. 371–80.

    Article  Google Scholar 

  6. E. Ura-Binczyk, N. Homazava, A. Uirich, R. Hauert, M. Lewandowska, K.J. Kurzydlowski, P. Schmutz: Corros. Sci., 2011, vol. 53, pp. 1825–37.

    Article  Google Scholar 

  7. F. Rovere, D. Music, J.M. Schneider, P.H. Mayrhofer: Acta Mater., 2010, vol. 58, pp. 2708–15.

    Article  Google Scholar 

  8. W.M. Seidl, M. Bartosik, S. Kolozsvari, H. Bolvardi, P.H. Mayrhofer: Surf. Coat. Tech., 2018, vol. 347, pp. 427–33.

    Article  Google Scholar 

  9. F. Rosalbino, E. Angelini, S.D. Negri, A. Saccone, S. Delfino: Intermetallics, 2003, vol. 11, pp. 435–41.

    Article  Google Scholar 

  10. H. Bo, L.B. Liu, Z.P. Jin: J. Alloys Compd., 2010, vol. 490, pp. 318–25.

    Article  Google Scholar 

  11. W.T. Wang, X.M. Zhang, Z.G. Guo, Y.Z. Jia, L.Y. Ye, D.W. Zheng, L. Liu: J. Alloys Compd., 2010, vol. 491, pp. 366–71.

    Article  Google Scholar 

  12. W.J. Kim, J.K. Kim, H.K. Kim, J.W. Park, Y.H. Jeong: J. Alloys Compd., 2008, vol. 450, pp. 222–28.

    Article  Google Scholar 

  13. W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, K. Marthinsen: J. Alloys Compd., 2009, vol. 470, pp. 107–10.

    Article  Google Scholar 

  14. W.-S. Lee, T.-H. Chen, C.-F. Lin, M.-S. Chen: J. Alloys Compd., 2010, vol. 493, pp. 580–89.

    Article  Google Scholar 

  15. F. Rosalbino, E. Angelini, S.D. Negri, A. Saccone, S. Delfino: Intermetallics, 2005, vol. 13, pp. 55–60.

    Article  Google Scholar 

  16. R.A. Karnesky, D.C. Dunand, D.N. Seidman: Acta Mater., 2009, vol. 57, pp. 4022–31.

    Article  Google Scholar 

  17. S.P. Wen, Z.B. Xing, H. Huang, B.L. Li, W. Wang, Z.R. Nie: Mater. Sci. Eng. A, 2009, vol. 516, pp. 42–49.

    Article  Google Scholar 

  18. O.Y. Emes-Mysenko: Visn. Lviv. Univ. Ser. Chem., 1971, vol. 12, pp. 12.

    Google Scholar 

  19. R.M. Rykhal, O.S. Zarechnyuk, O.P. Mats’kiv: Visn. Lviv. Univ. Ser. Chem., 1979, vol. 21, pp. 46.

    Google Scholar 

  20. Y. Verbovytsky, T. Mika, B. Kotur, Prace Naukowe WSP. Czestochowa, Chemia i ochrona srodowiska, 2005, vol. 10, pp. 91–97.

    Google Scholar 

  21. O.S. Zarechnyuk, R.M. Rykhal: Visn. Lviv. Univ. Ser. Chem., 1974, vol. 16, pp. 5.

    Google Scholar 

  22. O.S. Zarechnyuk, R.M. Rykhal, N.V. German: Visn. Lviv. Univ. Ser. Chem., 1971, vol. 12, pp. 10.

    Google Scholar 

  23. B.Y. Kotur, E. Gratz, in: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 27, Elsevier Science B.V., Amsterdam, 1999, pp. 33–553.

    Google Scholar 

  24. M.X. Ling, Y. Liang, S.J. Wei, Y. Liu, M.J. Pang, Y.Z. Zhan: J. Phase Equilib., 2012, vol. 33, pp. 203–09.

    Article  Google Scholar 

  25. V. Raghavan: J. Phase Equilib., 2012, vol. 33, pp. 474–75.

    Article  Google Scholar 

  26. Y. Liang, S.J. Wei, M.X. Ling, Y. Liu, M.J. Pang, Y.Z. Zhan, W.B. Zhou: Int. J. Mater. Res., 2013, vol. 104, pp. 1233–39.

    Article  Google Scholar 

  27. M.J. Pang, Y.Z. Zhan, Y. Du: J. Solid State Chem., 2013, vol. 198, pp. 344–56.

    Article  Google Scholar 

  28. O. Moze, R.M. Ibberson, R. Caciuffo, K.H.J. Buschow: J. Less common Met., 1990, vol. 166, pp. 329–34.

    Article  Google Scholar 

  29. V.M.T. Thiede, W. Jeitschko, S. Niemann, T. Ebel: J. Alloys Compd., 1998, vol. 267, pp. 23–31.

    Article  Google Scholar 

  30. S. Niemann, W. Jeitschko: J. Solid State Chem., 1995, vol. 116, pp. 131–35.

    Article  Google Scholar 

  31. A.J. Bradley, S.S. Lu: Int. J. Mater. Res., 1937, vol. 60, pp. 319–37.

    Google Scholar 

  32. J.J. Ramon, D. Shechtman, S.F. Dirnfeld: Scripta Metal. Mater., 1990, vol. 24, pp. 1087–91.

    Google Scholar 

  33. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams. ASM International, Materials Park, 1990.

    Google Scholar 

  34. W. Koster, E. Wachtel, K. Grube: Z. Metallkd., 1963, vol. 54, pp. 393–401.

    Google Scholar 

  35. G.V. Raynor, K. Little: J. Jpn. I. Met., 1945, vol. 71, pp. 481–89.

    Google Scholar 

  36. J.L. Murray: J. Phase Equilib., 1998, vol. 19, pp. 367–75.

    Article  Google Scholar 

  37. T. Helander, O. Tolochko: J. Phase Equilib., 1998, vol. 20, pp. 57–60.

    Article  Google Scholar 

  38. B. Grushko, B. Przepiorzynski, E. Kowalska-Strzeciwilk, M. Surowiec: J. Alloys Compd., 2006, vol. 420, pp. L1–L4.

    Article  Google Scholar 

  39. T. Tokunaga, H. Ohtani, M. Hasebe: Mater. Sci. Forum., 2007, vol. 539-543, pp. 2407–12.

    Article  Google Scholar 

  40. M.J. Cooper: Acta Crystallogr., 1959, vol. 13, pp. 257–63.

    Article  Google Scholar 

  41. H. Okamoto: J. Phase Equilib., 2008, vol. 29, pp. 112–13.

    Article  Google Scholar 

  42. D. Liu, R.H. Wang, Y.Y. Ye: Phys Rev., 1991, vol. 43, pp. 4648–52.

    Article  Google Scholar 

  43. A. Almeida, R. Vilar: Scripta Mater., 2010, vol. 63, pp. 811–14.

    Article  Google Scholar 

  44. L.A. Bendersky, R.S. Roth, J.T. Ramon, D. Shechtman: Metall. Trans. A, 1991, vol. 22, pp 5–10.

    Article  Google Scholar 

  45. M. Audier, M. Durand-Charre, E. Lacau, H. Klein: J. Alloys Compd., 1995, vol. 220, pp. 225–30.

    Article  Google Scholar 

  46. K. Mahdouk, J.-C. Gachon: J. Phase Equilib., 2000, vol. 21, pp. 157–66.

    Article  Google Scholar 

  47. J. G, C. Neto, S. Gama, C.A. Ribeiro: J. Alloys Compd., 1992, vol. 182, pp. 271–80.

  48. B.B. Cao, K.H. Kuo: J. Alloys Compd., 2008, vol. 458, pp. 238–47.

    Article  Google Scholar 

  49. K.Y. Wen, Y.L. Chen, K.H. Kuo: Metall. Trans. A, 1992, vol. 23, pp. 2437–45.

    Article  Google Scholar 

  50. C.B. Shoemaker, D.A. Keszler, D.P. Shoemaker: Acta Crystallogr. A, 1989, vol. 45, pp. 13–20.

    Article  Google Scholar 

  51. K. Wen, Y. Chen, K. Kuo: Metall. Trans. A, 1992, vol. 29, pp. 2437.

    Article  Google Scholar 

  52. C.Z. Fan, C. Liu, IUCrData, 2018. 3(2).

  53. B. Grushko, E. Kowalska-Strzeciwilk, B. Przepiorzynski, M. Surowiee: J. Alloys Compd., 2005, vol. 402, pp. 98–104.

    Article  Google Scholar 

  54. H. Wu, M. Zhang, B.J. Xu, G.P. Ling: J. Alloys Compd., 2014, vol. 610, pp. 492–97.

    Article  Google Scholar 

  55. B. Hu, W-W Zhang, Y.B. Peng, Y. Du, S.H. Liu, Y.L. Zhang: Thermochim. Acta., 2013, vol. 561, pp. 77–90.

    Article  Google Scholar 

  56. T. Lindahl, A. Pilotti, S. Westman: Acta Chem. Scand., 1968, vol. 22, pp. 748–52.

    Article  Google Scholar 

  57. F.J.A.D. Broeder, G.V. Tendeloo, S. Amelinckx, J. Hornstra, R.D. Ridder, J.V. Landuty, H.J.V. Daal: Phys. Stat. Sol., 1981, vol. 67, pp. 223–48.

    Google Scholar 

  58. G.V. Tendeloo, F.J.A.D. Broeder, S. Amelinckx, R.D. Ridder, J.V. Landuty, H.J.V. Daal: Phys. Stat. Sol., 1981, vol. 67, pp. 217–32.

    Article  Google Scholar 

  59. K.H.J. Buschow, J.H.N.V. Vucht: Z. Metallkd., 1965, vol. 56, pp. 9–13.

    Google Scholar 

  60. H. Okamoto: J. Phase Equilib., 2011, vol. 32, pp. 261–62.

    Article  Google Scholar 

  61. K.A. Gschneidner, F.W. Calderwood: Bulletin of Alloy Phase Diagrams. 1988, vol. 9, pp. 676–78.

    Article  Google Scholar 

  62. J.H.N.V. Vucht, K.H.J. Buschow: Philips Res. Repts., 1964, vol. 19, pp. 319–22.

    Google Scholar 

  63. E.E. Havinga, K.H.J. Buschow, H.J.V. Daal: Solid State Commun., 1973, vol. 13, pp. 621–27.

    Article  Google Scholar 

  64. K.H.J. Buschow: J. Less Common Met., 1965, vol. 8, pp. 209–12.

    Article  Google Scholar 

  65. R.L. Davis: Acta Crystallogr. A, 1987, vol. 43, pp. 1675–77.

    Google Scholar 

  66. K.H.J. Buschow, A.S.V.D. Goot: J. Less Common Met., 1971, vol. 24, pp. 117–20.

    Article  Google Scholar 

  67. I. PoP, M. Andrecut, I. Burda, V. Crisan: Mater. Lett., 1992, vol. 15, pp. 171–74.

    Article  Google Scholar 

  68. M. Andrecut, I. Pop, I. Burda: J. Phys. D, 1993, vol. 26, pp. 1810–13.

    Article  Google Scholar 

  69. V. Raghavan: J. Phase Equilib., 2005, vol. 26, pp. 180.

    Article  Google Scholar 

  70. V. Raghavan: J. Phase Equilib., 2009, vol. 31, pp. 44–45.

    Article  Google Scholar 

  71. Y.F. Pan, W.C. Yang, C.H. Tang, Y.N. Lan, Y.Z. Zhan: Phase Transit., 2015, vol. 88, pp. 1111–21.

    Article  Google Scholar 

  72. A. Saccone, G. Cacciamani, S.D. Negri, R.Ferro: J. Phase Equilib., 2002, vol. 23, pp. 29–37.

    Article  Google Scholar 

  73. V. Raghavan: J. Phase Equilib., 2010, vol. 31, pp. 453–54.

    Article  Google Scholar 

  74. Z.L. Yang, Y.Z. Zhan, H.L. Mo, Y. Du, H.Y. Xu: J. Alloys Compd., 2010, vol. 503, pp. 61–64.

    Article  Google Scholar 

  75. J. Hu, Y.Z. Zhan, M.J. Pang, C.L. Li, W.C. Yang, Y. Du: J. Phase Equilib., 2011, vol. 32, pp. 412–17.

    Article  Google Scholar 

  76. S.K. Pan, X. Liu, L.C. Cheng, X.K. Wang, G.H. Rao, Q.R. Yao, H.Y. Zhou: J. Alloys Compd., 2014, vol. 605, pp. 164–67.

    Article  Google Scholar 

  77. Y.Z. Zhan, Y. Du, Y.H. Zhuang, Determination of phase diagrams using equili-brated alloys, in: J.-C. Zhao (Ed.), Methods for Phase Diagram Determination, First ed., Elsevier Science Press, Amsterdam, The Netherlands, 2007, pp. 108–150.

    Chapter  Google Scholar 

Download references

Acknowledgments

This research work is supported by the National Key R&D Program of China (2016YFB0301400), the National Natural Science Foundation of China (51761002), the Guangxi Natural Science Foundation (2018JJD160006), the Training Plan of High-Level Talents of Guangxi University (XMPZ160714), and the research project of Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials (GXYSSF1807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 2, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Zhan, Y. Phase-Equilibrium Investigation of the Al-Cr-Er Ternary System at 773 K (500 °C). Metall Mater Trans A 50, 2956–2970 (2019). https://doi.org/10.1007/s11661-019-05217-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05217-w

Navigation