Skip to main content

Advertisement

Log in

Correction Factor for Unbiased Estimation of Weibull Modulus by the Linear Least Squares Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In material science, linear least squares is the most popular method to estimate Weibull parameters for stress data. However, the estimation \( {\hat{m}} \) of the Weibull modulus m is usually biased due to the data uncertainty and shorcoming of estimation methods. Many researchers have developed techniques to produce unbiased estimation of m. In this study, a correction factor is considered. First, the distribution of \( {\hat{m}} \) is derived mathematically and proved through a Monte Carlo simulation numerically again. Second, based on the derived distribution, the correction factor that depends only on the probability estimator of cumulative failure and stress data size is presented. Then, simple procedures are proposed to compute it. Further, the correction factors for four common probability estimators and typical sizes are displayed. The coefficient of variation and mode are also discussed to determine the optimal probability estimator. Finally, the proposed correction factor is applied to four groups of stress data for the unbiased estimation of m correspondingly concerning the alumina agglomerate, ball stud, coated conductor and steel, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Davies, T. Ishikawa, M. Shibuya and T. Hirokawa: Compos. Sci. Technol., 1999, vol. 59, pp. 801–811.

    Article  Google Scholar 

  2. I. Davies, T. Ishikawa, M. Shibuya, T. Hirokawa and J. Gotoh: Compos Part A., 1999, vol. 30, pp. 587–591.

    Article  Google Scholar 

  3. A. Badu and V, Jayabalan. J. Mater. Sci. Technol., vol. 25, pp. 341-343 (2009)

    Google Scholar 

  4. Y. Boiko. Colloid. Polym. Sci., 2017, vol. 295, pp. 1993–1999.

    Article  Google Scholar 

  5. J. Quinn and G. Quinn. Dent. Mater., 2010, vol. 26, pp. 135–147.

    Article  Google Scholar 

  6. D. Wu and J. Zhou and Y. Li: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1099–1105.

    Article  Google Scholar 

  7. A. Khalili and K. Krom: J. Mater. Sci., 1991, vol. 26, pp. 6741–6752.

    Article  Google Scholar 

  8. D. Wu, Y.Li, J. Zhang, L.Chang, D.Wu, Z.Fang, and Y. Shi: Chem. Eng. Sci., 2001, vol. 56, pp. 7035–7044.

    Article  Google Scholar 

  9. K. Trustrum, A. De, S. Jayatilaka, J. Mater. Sci. 14, 1080–1084 (1979)

    Article  Google Scholar 

  10. D. Wu, G.Lu, H.Jiang and Y. Li: J. Am. Ceram. Soc., 2006, vol. 26, pp. 1099–1105.

    Article  Google Scholar 

  11. N. Hua, G. Li, C. Lin, X. Ye, W. Wang and W. Chen: J. Non-cryst. Solids., 2015, vol. 432, pp. 342–347.

    Article  Google Scholar 

  12. A. Talimian and V M. Sglavo: J. Non-cryst. Solids., 2017, vol. 456, pp. 12–21.

    Article  Google Scholar 

  13. A S. Haidyrah, J W. Newkirk, and C H. Castao: J. Nucl. Mater., 2016, vol. 470, pp. 244–250.

    Article  Google Scholar 

  14. G. Ma, W. Zhou, R A. Regueiro, Q. Wang and X. Chang: Powder. Technol., 2017, vol. 308, pp. 388–397.

    Article  Google Scholar 

  15. L. Yang, P. Cai, Z. Xu, Y. Jin, C. Liang, F. Yin and T. Zhai: Int. J. Fatigue., 2016, vol. 96, pp. 185–195.

    Article  Google Scholar 

  16. G. Quercia, D. Chan and K. Luke: J. Petrol. Sci. Eng., 2016, vol. 146, pp. 536–544.

    Article  Google Scholar 

  17. Z. Lv, P. Cai, T. Yu, Y. Jin, H. Zhang, W. Fu and T. Zhai: J. Alloy. Compd., 2017, vol. 691, pp. 103–109.

    Article  Google Scholar 

  18. B. Chen, X. Zhang, J. Yu and Y. Wang: Constr. Bulid. Materj., 2017, vol. 133, pp. 330–339.

    Article  Google Scholar 

  19. I. Davies: J. Mater. Sci., 2004, vol. 39, pp. 1441–1444.

    Article  Google Scholar 

  20. L. Zhang, M. Xie and L. Tang: Qual. Reliab. Eng. Int., 2006, vol. 22, pp. 905–917.

    Article  Google Scholar 

  21. I. Davies: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 369–380.

    Article  Google Scholar 

  22. I. Davies: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 2973–2981.

    Article  Google Scholar 

  23. I. Davies: J. Mater. Sci. Lett., 2001, vol. 20, pp. 997–999.

    Article  Google Scholar 

  24. X. Jia, P. Jiang and B. Guo: J. Cent. South Univ., 2015, vol. 22, pp. 3506–3511.

    Article  Google Scholar 

  25. D. Thoman, L. Bain and C. Antle: Technometrics, 1969, vol. 11, pp. 445–460.

    Article  Google Scholar 

  26. M. Matsumoto and T. Nishimura: ACM T. Model. Comput. S., 1998, vol. 8, pp. 3–30.

    Article  Google Scholar 

  27. X. Jia, S. Nadarajah and B. Guo: IEEE T. Reliab., 2018, vol. 67, pp. 432–445.

    Article  Google Scholar 

  28. I. Park, K. Nam and C. Kang: J. Mech. Sci. Technol., 2018, vol. 32, pp. 5647–5652.

    Article  Google Scholar 

  29. S. Muto, S. Fujita, K. Akashi and T. Yoshida et al.: IEEE Trans. Appl. Supercon., 2018, vol. 28, pp. 1–4.

    Article  Google Scholar 

  30. A. Tiwari, A. Gopalan, A. Shokry, R. Singh and P. Stahle: Int. J. Fract., 2017, vol. 205, pp. 103–109.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and referees for careful reading and comments which greatly improved the paper. This work was partially supported by the National Natural Science Foundation of China under Grant no. 71801219 and the Hunan Provincial Natural Science Foundation of China 2019JJ50730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Xi, G. & Nadarajah, S. Correction Factor for Unbiased Estimation of Weibull Modulus by the Linear Least Squares Method. Metall Mater Trans A 50, 2991–3001 (2019). https://doi.org/10.1007/s11661-019-05216-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05216-x

Navigation