Metallurgical and Materials Transactions A

, Volume 50, Issue 6, pp 2720–2731 | Cite as

Pulsed Electric Current V-Bending Springback of AZ31B Magnesium Alloy Sheets

  • Jinwoo Lee
  • Hyuk Jong Bong
  • Young-Seon Lee
  • Daeyong KimEmail author
  • Myoung-Gyu LeeEmail author


The springback of AZ31B magnesium alloy sheets subjected to pulsed electric current-assisted V-bending tests was investigated. To study the effect of pulsed electric current on the bending-dominated deformation behavior of magnesium alloy sheets, the stress–strain responses from the electric current-assisted uniaxial tension and compression tests were experimentally measured. The stress–strain curves under pulsed electric current showed an instantaneous stress drop under the application of the electric pulse. The ductility was enhanced owing to the application of electric current. The electrically assisted V-bending tests helped reduce the springback compared with conventional room-temperature V-bending tests, and the magnitude of the springback reduction increased with the increase in the electric current density. A thermo-mechanical-electrical finite element model for the electrically assisted V-bending test was developed. To consider the Joule heating effect, temperature-dependent hardening and a yield function with strength differential were implemented for simulating the AZ31B sheet. The simulations could reproduce the experimental flow stress curves of the uniaxial tension/compression tests under pulsed electric current, characterized by an instantaneous stress drop and subsequent transient hardening behavior. The simulated springback profiles were in good agreement with the measured V-bending test data, thus validating the proposed finite element modeling procedure.



The authors appreciate the supports by the Fundamental Research Program of the Korea Institute of Materials Science (KIMS, PNK6000), and the Research & Development for Regional Industry of MOTIE (Grant No. R0006049), Republic of Korea.


  1. 1.
    1 H. Qiao, S.R. Agnew, and P.D. Wu: Int. J. Plast., 2015, vol. 65, pp. 61–84.CrossRefGoogle Scholar
  2. 2.
    2 N. Ogawa, M. Shiomi, and K. Osakada: Int. J. Mach. Tools Manuf., 2002, vol. 42, pp. 607–14.CrossRefGoogle Scholar
  3. 3.
    3 H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, and K. Higashi: Int. J. Plast., 2001, vol. 17, pp. 387–97.CrossRefGoogle Scholar
  4. 4.
    4 W.A. Salandro, C.J. Bunget, and L. Mears: J. Manuf. Sci. Eng., 2011, vol. 133, p. 64503.CrossRefGoogle Scholar
  5. 5.
    5 H. Laurent, J. Coer, P.Y. Manach, M.C. Oliveira, and L.F. Menezes: Int. J. Mech. Sci., 2015, vol. 93, pp. 59–72.CrossRefGoogle Scholar
  6. 6.
    6 J.J. Jones, L. Mears, and J.T. Roth: J. Manuf. Sci. Eng., 2012, vol. 134, p. 34504.CrossRefGoogle Scholar
  7. 7.
    7 R. Fan, J. Magargee, P. Hu, and J. Cao: Mater. Sci. Eng. A, 2013, vol. 574, pp. 218–25.CrossRefGoogle Scholar
  8. 8.
    8 W. Salandro, J. Jones, C. Bunget, L. Mears, and J. Roth: Electrically Assisted Forming, Springer International Publishing, Switzerland, 2015.CrossRefGoogle Scholar
  9. 9.
    9 H. Xie, Q. Wang, K. Liu, F. Peng, X. Dong, and J. Wang: J. Mater. Process. Technol., 2015, vol. 219, pp. 321–27.CrossRefGoogle Scholar
  10. 10.
    10 H.-D. Nguyen-Tran, H.-S. Oh, S.-T. Hong, H.N. Han, J. Cao, S.-H. Ahn, and C. Doo-Man: Int. J. Precis. Eng. Manuf. Technol., 2015, vol. 2, pp. 365–76.CrossRefGoogle Scholar
  11. 11.
    11 H. Conrad: Mater. Sci. Eng. A, 2002, vol. 322, pp. 100–7.CrossRefGoogle Scholar
  12. 12.
    12 J.-H. Roh, J.-J. Seo, S.-T. Hong, M.-J. Kim, H.N. Han, and J.T. Roth: Int. J. Plast., 2014, vol. 58, pp. 84–99.CrossRefGoogle Scholar
  13. 13.
    J.T. Roth, I. Loker, D. Mauck, M. Warner, S.F. Golovashchenko, and A. Krause: in Transactions of the North American Manufacturing Research Institution of SME, vol. 36, 2008, pp. 405–12.Google Scholar
  14. 14.
    14 M.-J. Kim, K. Lee, K.H. Oh, I.-S. Choi, H.-H. Yu, S.-T. Hong, and H.N. Han: Scr. Mater., 2014, vol. 75, pp. 58–61.CrossRefGoogle Scholar
  15. 15.
    C.R. Green, T.A. McNeal, and J.T. Roth: in Transactions of the North American Manufacturing Research Institution of SME, vol. 37, 2009, pp. 403–10.Google Scholar
  16. 16.
    16 B.J. Ruszkiewicz, T. Grimm, I. Ragai, L. Mears, and J.T. Roth: J. Manuf. Sci. Eng., 2017, vol. 139, p. 110801.CrossRefGoogle Scholar
  17. 17.
    17 T. Lee, J. Magargee, M.K. Ng, and J. Cao: Int. J. Plast., 2017, vol. 94, pp. 44–56.CrossRefGoogle Scholar
  18. 18.
    18 K. Hariharan, M.-G. Lee, M.-J. Kim, H. Han, D. Kim, and S. Choi: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1–9.CrossRefGoogle Scholar
  19. 19.
    19 J. Magargee, F. Morestin, and J. Cao: J. Eng. Mater. Technol., 2013, vol. 135, p. 41003.CrossRefGoogle Scholar
  20. 20.
    20 J. Lee, S.-J. Kim, M.-G. Lee, J.H. Song, S. Choi, H.N. Han, and D. Kim: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2783–94.CrossRefGoogle Scholar
  21. 21.
    21 S.-J. Kim, S.-D. Kim, D. Yoo, J. Lee, Y. Rhyim, and D. Kim: Metall. Mater. Trans. A, 2016, vol. 47, pp. 6368–73.CrossRefGoogle Scholar
  22. 22.
    22 J. Kim, H. Ryou, D. Kim, D. Kim, W. Lee, S.-H. Hong, and K. Chung: Int. J. Mech. Sci., 2008, vol. 50, pp. 1510–8.CrossRefGoogle Scholar
  23. 23.
    23 J. Lee, S. Kim, Y. Lee, J. Lee, D. Kim, and M. Lee: Int. J. Plast., 2017, vol. 94, pp. 74–97.CrossRefGoogle Scholar
  24. 24.
    24 R. Hill: Proc. R. Soc. London, 1948, vol. 193, pp. 281–97.CrossRefGoogle Scholar
  25. 25.
    25 F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, and E. Chu: Int. J. Plast., 2003, vol. 19, pp. 1297–319.CrossRefGoogle Scholar
  26. 26.
    26 O. Cazacu and F. Barlat: Int. J. Plast., 2004, vol. 20, pp. 2027–45.CrossRefGoogle Scholar
  27. 27.
    27 O. Cazacu, B. Plunkett, and F. Barlat: Int. J. Plast., 2006, vol. 22, pp. 1171–94.CrossRefGoogle Scholar
  28. 28.
    28 B. Plunkett, O. Cazacu, and F. Barlat: Int. J. Plast., 2008, vol. 24, pp. 847–66.CrossRefGoogle Scholar
  29. 29.
    29 M.G. Lee, J.H. Kim, D. Kim, O.S. Seo, N.T. Nguyen, and H.Y. Kim: Exp. Mech., 2013, vol. 53, pp. 1039–55.CrossRefGoogle Scholar
  30. 30.
    30 R.K. Boger, R.H. Wagoner, F. Barlat, M.G. Lee, and K. Chung: Int. J. Plast., 2005, vol. 21, pp. 2319–43.CrossRefGoogle Scholar
  31. 31.
    31 M.G. Lee, D. Kim, C. Kim, M.L. Wenner, and K. Chung: Int. J. Plast., 2005, vol. 21, pp. 915–53.CrossRefGoogle Scholar
  32. 32.
    32 J.H. Kim, D. Kim, Y.-S. Lee, M.-G. Lee, K. Chung, H.-Y. Kim, and R.H. Wagoner: Int. J. Plast., 2013, vol. 50, pp. 66–93.CrossRefGoogle Scholar
  33. 33.
    33 J.H. Sung, J.H. Kim, and R.H. Wagoner: Int. J. Plast., 2010, vol. 26, pp. 1746–71.CrossRefGoogle Scholar
  34. 34.
    H.D. Hibbitt (2018) ABAQUS: User’s Manual. Hibbit,Karlsson & Sorensen Inc., PawtucketGoogle Scholar
  35. 35.
    35 J. Lee, J.H. Kim, M.G. Lee, F. Barlat, C. Zhou, Z. Chen, and R.H. Wagoner: Int. J. Plast., 2015, vol. 75, pp. 100–20.CrossRefGoogle Scholar
  36. 36.
    Matweb: Material data sheet: AZ31B,

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Materials Deformation DepartmentKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.Materials Processing Innovation Research DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea
  3. 3.Department of Materials Science and Engineering & RIAMSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations