Creep of Cu-Bi Alloys with High Bi Content Near and Above Melting Temperature of Bi

volume 50pages26902701(2019)

Abstract

Cu-Bi alloy with high Bi content can be used for thermal surge protection and energy storage. For these applications, creep at high temperatures, including temperatures above the melting temperature of Bi, Tm,Bi, becomes important. Accordingly, the creep behavior of Cu-Bi alloys, comprising 30 and 40 vol pct Bi, was studied under compression at temperatures above and below Tm,Bi. At 200 °C, which is below Tm,Bi, Cu-Bi showed a stress exponent of ~ 4 at high stresses and ~ 1 at low stresses. Finite element analysis revealed that the creep behavior of Cu-Bi at 200 °C was predominantly governed by Bi. On the other hand, at temperatures higher than Tm,Bi, Cu-Bi showed a short transient stage at high stresses, followed by sudden failure of the material. However, at low stresses, the sample first continued to expand and then started to accumulate compressive strain. A qualitative model based on interaction between liquid Bi and Cu is developed to explain the observed creep behavior at temperatures higher than Tm,Bi. The results obtained here shed light on the creep behavior of alloys with constituents having significantly different creep behavior and containing a non-reacting liquid phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    Although a metastable intermetallic superconducting Cu-Bi compound, Cu11Bi7, was discovered recently; it is stable at high pressures and under special conditions only.[5] Hence, it is not observed under ordinary test conditions or applications.

  2. 2.

    Melting temperature of pure Bi, Tm,Bi, is 271 °C.[11]

  3. 3.

    Solidification of Bi causes a volume expansion of 3.2 pct.[11]

References

  1. 1.

    B.K.D. Barman, S.P. Singh, and P. Kumar: Mater. Sci. Eng. A Struct., 2016, vol 666, pp. 339-49.

    Article  Google Scholar 

  2. 2.

    S.P. Singh, B.K.D. Barman, and P. Kumar: Mater. Sci. Eng. A Struct., 2016, vol 677, pp. 140-52.

    Article  Google Scholar 

  3. 3.

    G.M. Pharr, P.S. Godavarti, and B.L. Vaandrager: J. Mater. Sci., 1989, vol 24, pp. 784-92.

    Article  Google Scholar 

  4. 4.

    D.J. Chakrabarti and D.E. Laughlin, Bull. Alloy Phase Diagr., 1984, vol 5, pp. 148-55.

    Article  Google Scholar 

  5. 5.

    S.M. Clarke, J.P.S. Walsh, M. Amsler, C.D. Malliakas, T. Yu, S. Goedecker, Y. Wang, C. Wolverton, and D.E. Freedman, Angew. Chem. Int. Edit., 2016, vol 55, pp. 13446-9.

    Article  Google Scholar 

  6. 6.

    B.L. Vaandrager and G.M. Pharr, Scripta Metall. Mater., 1984, vol 18, pp. 1337-9.

    Article  Google Scholar 

  7. 7.

    G. B. Schaffer, T.B. Sercombe, and R.N. Lumley, Mater. Chem. Phys., 2001, vol 67, pp. 85-91.

    Article  Google Scholar 

  8. 8.

    JK Koike, MK Maruyama, H. Oikawa, Mater. Sci. Eng. A: Struct, 1997, vol 234, pp. 525-8.

    Article  Google Scholar 

  9. 9.

    H. Iwasaki, T. Mori, M. Mabuchi, and K. Higashi, Acta Mater., 1998, vol 46, pp. 6351-60.

    Article  Google Scholar 

  10. 10.

    J. L. Murray, Bull. Alloy Phase Diagr., 1982, vol 3, pp. 60-74.

    Article  Google Scholar 

  11. 11.

    F.K. Ojebuoboh, Jom-J. Min. Met. Mat S., 1992, vol 44, pp. 46-9.

    Article  Google Scholar 

  12. 12.

    D.E.J. Armstrong, A.J. Wilkinson, and S.G. Roberts, Phil. Mag. Lett., 2011, vol 91, pp. 394-400.

    Article  Google Scholar 

  13. 13.

    G. Themelis, S. Chikwembani, and J. Weertman, Mater. Charact., 1990, vol 24, pp. 27-40.

    Article  Google Scholar 

  14. 14.

    S. Chikwembani and J. Weertman, Metall. Mater. Trans. A, 1989, vol 20, pp. 1221-31.

    Article  Google Scholar 

  15. 15.

    R. Schweinfest, A. T. Paxton, and M. W. Finnis, Nature, 2004, vol 432, pp. 1008.

    Article  Google Scholar 

  16. 16.

    G. Duscher, M.F. Chisholm, U. Alber, and M. Rühle, Nat Mater., 2004, vol 3, pp. 621-6.

    Article  Google Scholar 

  17. 17.

    S. Divinski, M. Lohmann, C. Herzig, B. Straumal, B. Baretzky, and W. Gust, Phys. Rev. B, 2005, vol 71, pp. 104.

    Article  Google Scholar 

  18. 18.

    B.L. Vaandrager and G.M. Pharr, Acta Metall. Mater., 1989, vol 37, pp. 1057-66.

    Article  Google Scholar 

  19. 19.

    M.E. Kassner and K. Smith, J. Mater. Sci. Technol., 2014, vol 3, pp. 280-8.

    Google Scholar 

  20. 20.

    Y. Eckstein, A.W. Lawson, and D.H. Reneker, J. Appl. Phys., 1960, vol 31, pp. 1534-8.

    Article  Google Scholar 

  21. 21.

    V.P. Goltsev, S.I. Zhukova, and V.M. Anishchik, Phys. Status Solidi A, 1986, vol 96, pp. 135-9.

    Article  Google Scholar 

  22. 22.

    J.P. Poirier (1985) Creep of crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge University Press, Cambridge, pp. 27-33.

    Google Scholar 

  23. 23.

    R. Raj, G. Rixecker, and M. Valentinotti, Metall. Mater. Trans. A, 2007, vol 38, pp. 628-37.

    Article  Google Scholar 

  24. 24.

    P. Kumar, I. Dutta, and M.S. Bakir, J. Electron. Mater., 2012, vol 41, pp. 322-35.

    Article  Google Scholar 

  25. 25.

    R.M. Tahboub, M.E. Guindy, and H.D. Merchant, Oxid. Met., 1979, vol 13, pp. 545-56.

    Article  Google Scholar 

  26. 26.

    T.N. Rhodin Jr., J. Am. Chem. Soc., 1950, vol 72, pp. 5102-6.

    Article  Google Scholar 

  27. 27.

    PANalytical X’Pert HighScore Plus Software Database, PANalytical Inc. (2017).

Download references

Acknowledgments

The authors would like to thank the Board of Research in Nuclear Sciences (BRNS) for the financial support under Grant DAEO 0162. The help of Mr. Binay Kumar Deb Barman of Indian Institute of Science, Bangalore with a few of the experiments is greatly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 6, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Sonawane, D. & Kumar, P. Creep of Cu-Bi Alloys with High Bi Content Near and Above Melting Temperature of Bi. Metall Mater Trans A 50, 2690–2701 (2019). https://doi.org/10.1007/s11661-019-05206-z

Download citation