Abstract
Cu-Bi alloy with high Bi content can be used for thermal surge protection and energy storage. For these applications, creep at high temperatures, including temperatures above the melting temperature of Bi, Tm,Bi, becomes important. Accordingly, the creep behavior of Cu-Bi alloys, comprising 30 and 40 vol pct Bi, was studied under compression at temperatures above and below Tm,Bi. At 200 °C, which is below Tm,Bi, Cu-Bi showed a stress exponent of ~ 4 at high stresses and ~ 1 at low stresses. Finite element analysis revealed that the creep behavior of Cu-Bi at 200 °C was predominantly governed by Bi. On the other hand, at temperatures higher than Tm,Bi, Cu-Bi showed a short transient stage at high stresses, followed by sudden failure of the material. However, at low stresses, the sample first continued to expand and then started to accumulate compressive strain. A qualitative model based on interaction between liquid Bi and Cu is developed to explain the observed creep behavior at temperatures higher than Tm,Bi. The results obtained here shed light on the creep behavior of alloys with constituents having significantly different creep behavior and containing a non-reacting liquid phase.
This is a preview of subscription content, access via your institution.












Notes
- 1.
Although a metastable intermetallic superconducting Cu-Bi compound, Cu11Bi7, was discovered recently; it is stable at high pressures and under special conditions only.[5] Hence, it is not observed under ordinary test conditions or applications.
- 2.
Melting temperature of pure Bi, Tm,Bi, is 271 °C.[11]
- 3.
Solidification of Bi causes a volume expansion of 3.2 pct.[11]
References
- 1.
B.K.D. Barman, S.P. Singh, and P. Kumar: Mater. Sci. Eng. A Struct., 2016, vol 666, pp. 339-49.
- 2.
S.P. Singh, B.K.D. Barman, and P. Kumar: Mater. Sci. Eng. A Struct., 2016, vol 677, pp. 140-52.
- 3.
G.M. Pharr, P.S. Godavarti, and B.L. Vaandrager: J. Mater. Sci., 1989, vol 24, pp. 784-92.
- 4.
D.J. Chakrabarti and D.E. Laughlin, Bull. Alloy Phase Diagr., 1984, vol 5, pp. 148-55.
- 5.
S.M. Clarke, J.P.S. Walsh, M. Amsler, C.D. Malliakas, T. Yu, S. Goedecker, Y. Wang, C. Wolverton, and D.E. Freedman, Angew. Chem. Int. Edit., 2016, vol 55, pp. 13446-9.
- 6.
B.L. Vaandrager and G.M. Pharr, Scripta Metall. Mater., 1984, vol 18, pp. 1337-9.
- 7.
G. B. Schaffer, T.B. Sercombe, and R.N. Lumley, Mater. Chem. Phys., 2001, vol 67, pp. 85-91.
- 8.
JK Koike, MK Maruyama, H. Oikawa, Mater. Sci. Eng. A: Struct, 1997, vol 234, pp. 525-8.
- 9.
H. Iwasaki, T. Mori, M. Mabuchi, and K. Higashi, Acta Mater., 1998, vol 46, pp. 6351-60.
- 10.
J. L. Murray, Bull. Alloy Phase Diagr., 1982, vol 3, pp. 60-74.
- 11.
F.K. Ojebuoboh, Jom-J. Min. Met. Mat S., 1992, vol 44, pp. 46-9.
- 12.
D.E.J. Armstrong, A.J. Wilkinson, and S.G. Roberts, Phil. Mag. Lett., 2011, vol 91, pp. 394-400.
- 13.
G. Themelis, S. Chikwembani, and J. Weertman, Mater. Charact., 1990, vol 24, pp. 27-40.
- 14.
S. Chikwembani and J. Weertman, Metall. Mater. Trans. A, 1989, vol 20, pp. 1221-31.
- 15.
R. Schweinfest, A. T. Paxton, and M. W. Finnis, Nature, 2004, vol 432, pp. 1008.
- 16.
G. Duscher, M.F. Chisholm, U. Alber, and M. Rühle, Nat Mater., 2004, vol 3, pp. 621-6.
- 17.
S. Divinski, M. Lohmann, C. Herzig, B. Straumal, B. Baretzky, and W. Gust, Phys. Rev. B, 2005, vol 71, pp. 104.
- 18.
B.L. Vaandrager and G.M. Pharr, Acta Metall. Mater., 1989, vol 37, pp. 1057-66.
- 19.
M.E. Kassner and K. Smith, J. Mater. Sci. Technol., 2014, vol 3, pp. 280-8.
- 20.
Y. Eckstein, A.W. Lawson, and D.H. Reneker, J. Appl. Phys., 1960, vol 31, pp. 1534-8.
- 21.
V.P. Goltsev, S.I. Zhukova, and V.M. Anishchik, Phys. Status Solidi A, 1986, vol 96, pp. 135-9.
- 22.
J.P. Poirier (1985) Creep of crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge University Press, Cambridge, pp. 27-33.
- 23.
R. Raj, G. Rixecker, and M. Valentinotti, Metall. Mater. Trans. A, 2007, vol 38, pp. 628-37.
- 24.
P. Kumar, I. Dutta, and M.S. Bakir, J. Electron. Mater., 2012, vol 41, pp. 322-35.
- 25.
R.M. Tahboub, M.E. Guindy, and H.D. Merchant, Oxid. Met., 1979, vol 13, pp. 545-56.
- 26.
T.N. Rhodin Jr., J. Am. Chem. Soc., 1950, vol 72, pp. 5102-6.
- 27.
PANalytical X’Pert HighScore Plus Software Database, PANalytical Inc. (2017).
Acknowledgments
The authors would like to thank the Board of Research in Nuclear Sciences (BRNS) for the financial support under Grant DAEO 0162. The help of Mr. Binay Kumar Deb Barman of Indian Institute of Science, Bangalore with a few of the experiments is greatly appreciated.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted July 6, 2018.
Rights and permissions
About this article
Cite this article
Singh, S.P., Sonawane, D. & Kumar, P. Creep of Cu-Bi Alloys with High Bi Content Near and Above Melting Temperature of Bi. Metall Mater Trans A 50, 2690–2701 (2019). https://doi.org/10.1007/s11661-019-05206-z
Received:
Published:
Issue Date: