Skip to main content
Log in

Replacement of Ni by Mn in Commercial High-Ni Austenitic Cast Steels Used for High-Performance Turbocharger Housings

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-Ni austenitic cast steels were fabricated by replacing the expensive Ni content by inexpensive Mn in a commercial DIN 1.4849 steel (0.4C-2.0Mn-1.5Si-20Cr-38Ni-1.5Nb (wt pct)), and their high-temperature tensile properties were enhanced by controlling the volume fraction and distribution of carbides. The 14-pct-Ni-containing steel showed the highest total fraction and most homogeneous distribution of carbides due to the smallest cell size, which played a role in improving high-temperature properties far better than those of the DIN 1.4849 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. H. Wen-Tai and R.W.K. Honeycombe: Mater. Sci. Tech., 1985, vol. 1, pp. 385-89.

    Article  Google Scholar 

  2. X.Q. Wu, H.M. Jing, Y.G. Zheng, Z.M. Yao, W. Ke, and Z.Q. Hu: Mater. Sci. Eng. A, 2000, vol. A293, pp. 252-60.

    Article  Google Scholar 

  3. M. Ekström, and S. Jonsson: Mater. Sci. Eng. A, 2014, vol. 616, pp. 78-87.

    Article  Google Scholar 

  4. L.H. De Almeida, A.F. Ribeiro, and I. Le May: Mater. Charact., 2002, vol. 49, pp. 219-29.

    Article  Google Scholar 

  5. Y.-J. Kim, H. Jang, and Y.-J. Oh: Mater. Sci. Eng. A, 2009, vol. A526, pp. 244-49.

    Article  Google Scholar 

  6. F. Masuyama: ISIJ Int., 2001, vol. 41, pp. 612-25.

    Article  Google Scholar 

  7. T. Sourmail: Mater. Sci. Tech., 2001, vol. 17, pp. 1-14.

    Article  Google Scholar 

  8. M. Sumita, T. Hanawa, and S.H. Teoh: Mater. Sci. Eng. C, 2004, vol. 24, pp. 753-60.

    Article  Google Scholar 

  9. G.D. Almeida-Soares, L.H. Almeida, T.L. Silveira, and I. Lay: Mater. Charact., 1992, vol. 29, pp. 387-96.

    Article  Google Scholar 

  10. S.S. Wang, D.L. Peng, L. Chang, and X.D. Hu: Mater. Design, 2013, vol. 50, pp. 174-80.

    Article  Google Scholar 

  11. H.Y. Ha, T.H. Lee, and S. Kim, Met. Mater. Int., 2017, vol. 23, pp. 115-25.

    Article  Google Scholar 

  12. D.B. Park, M.Y. Huh, W.S. Jung, J.Y. Suh, J.H. Shim, and S.C. Lee: J. Alloy. Comp., 2013, vol. 574, pp. 532-538.

    Article  Google Scholar 

  13. B.Peng, H. Zhang, J. Hong, J. Gao, H. Zhang, J. Li, and Q. Wang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4424-30.

    Article  Google Scholar 

  14. S. Heino: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1893-905.

    Article  Google Scholar 

  15. J. Guo, L. Liu, Y. Feng, S. Liu, X. Ren, and Q. Yang: Met. Mater. Int., 2017, vol. 23, pp. 313-19.

    Article  Google Scholar 

  16. A.A. Kaya, P. Krauklis, and D.J. Young: Mater. Charact., 2002, vol. 49, pp. 11-21.

    Article  Google Scholar 

  17. S. Haro, L. López, T.R. Velasco, and B. Viramontes: Mater. Chem. Phys., 2000, vol. 66, pp. 90–6.

    Article  Google Scholar 

  18. S. Jung, Y.H. Jo, C. Jeon, W.-M. Choi, B.-J. Lee, Y.-J. Oh, G.-Y. Kim, S. Jang, and S. Lee: Mater. Sci. Eng. A, 2017, vol. 682, pp. 147-55.

    Article  Google Scholar 

  19. F. Ohmenhäuser, C. Schwarz, S. Thalmair, and H.S. Evirgen: Mater. Design, 2014, vol. 64, pp. 631-39.

    Article  Google Scholar 

  20. T. Seifert, C. Schweizer, M. Schlesinger, M. Möser, and M. Eibl: Int. J. Mat. Res., 2010, vol. 101, pp. 942-50.

    Article  Google Scholar 

  21. A. Schaeffler: Met. Progr., 1949, vol. 56, pp. 680, 680b.

  22. L.A. Dobrzanski, Steel. Res., 1986, vol. 57, pp. 37-45.

    Article  Google Scholar 

  23. WHO (2008) Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohohocken, PA.

    Google Scholar 

  24. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  25. B.-J. Lee, and B. Sundman: TCFE2000: The Thermo-Calc Steels Database, KTH, Stockholm, 1999, pp. 2-81.

    Google Scholar 

  26. K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, and B.-J. Lee: J. Alloy. Comp., 2010, vol. 505, pp. 217-23.

    Article  Google Scholar 

  27. S. Jung, S.S. Sohn, W.-M. Choi, B.-J. Lee, Y.-J. Oh, S. Jang, and S. Lee: Met. Mater. Int., 2017, vol. 23, pp. 43-53.

    Article  Google Scholar 

  28. T.W. Clyne, and W. Kurz: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 965-71.

    Article  Google Scholar 

  29. I. Ohnaka: T. Iron. Steel. I. JPN., 1986, vol. 12, pp. 1045-51.

    Article  Google Scholar 

  30. D.J. Seol, Y.M. Won, T.-J. Yeo, K.H. Oh, J.K. Park, and C.H. Yim: ISIJ Int., 1999, vol. 39, pp. 91-8.

    Article  Google Scholar 

  31. P.J. Wray: Metall. Mater. Trans. A, 1984, vol. 15, pp. 2041-58.

    Article  Google Scholar 

  32. S.J. Ko, and Y.-J. Kim: Mater. Sci. Eng. A, 2012, vol. 534, pp. 7-12.

    Article  Google Scholar 

  33. M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H.G. Armaki, and K. Maruyam: Mater. Sci. Eng. A, vol. 510–511, pp. 162-68 (2009).

    Article  Google Scholar 

  34. R.L. Klueh, P.J. Maziasz, and E.H. Lee: Mater. Sci. Eng. A, vol. 102, pp. 115-24 (1987).

    Article  Google Scholar 

  35. S. Jung, Y.H. Jo, C. Jeon, W.-M. Choi, B.-J. Lee, Y.-J. Oh, G.-Y. Kim, S. Jang, and S. Lee: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 568-74.

    Article  Google Scholar 

  36. S.R. Chen, H.A. Davies, and W.T. Rainforth: Acta. Mater., 1999, vol. 47, pp. 4555-69.

    Article  Google Scholar 

  37. C.K. Kim, J.I. Park, J.H. Ryu, and S. Lee: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 481-92.

    Article  Google Scholar 

  38. J.W. Park, H.C. Lee, and S. Lee: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 399-409.

    Article  Google Scholar 

  39. A. Wiengmoon: Naresuan. Univ. Eng. J, 2011, vol. 6, pp. 64-70.

    Google Scholar 

  40. S.W. Kim, U.J. Lee, K.D. Woo, and D.K. Kim: Mater. Sci. Tech, 2003, vol. 19, pp 1727-32.

    Article  Google Scholar 

  41. Y.J. Kang, J.C. Oh, H.C. Lee, and S. Lee: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2515-25.

    Article  Google Scholar 

  42. A.V. Rodrigues, T.S. Lima, T.A. Vida, C. Brito, A. Garcia, and N. Cheung: Met. Mater. Int., 2018, vol.24, pp. 1058-76.

    Article  Google Scholar 

  43. J.R. Davis: ASM Specialty Handbook-Stainless Steels, ASM International, Materials Park, OH, 1994, pp. 378–80.

    Google Scholar 

  44. R. Peraldi, and B.A. Pint: Oxid. Met. 2004, vol. 61, pp. 463-83.

    Article  Google Scholar 

  45. X. Peng, J. Yan, Y. Zhou, and F. Wang: Acta Mater. 2005, vol. 53, pp. 5079-88.

    Article  Google Scholar 

  46. T. Ishitsuka and H. Mimura: JSME Int. J. A, 2002, vol. A45, pp. 110-17.

    Article  Google Scholar 

  47. M. Filipovic, Z. Kamberovic, M. Korac, and B. Jordovic: ISIJ Int., 2013, vol. 53, pp. 2160-66.

    Article  Google Scholar 

  48. S. Kheirandish: ISIJ Int., 2001, vol. 41, pp. 1502-09.

    Article  Google Scholar 

  49. London Metal Exchange: http://www.lme.com. Accessed 10 Sept 2018.

  50. M. Ekström, and S. Jonsson: Mater. Sci. Eng. A, vol. 616, pp. 78-87 (2014).

    Article  Google Scholar 

  51. N. Fujita, K. Ohmura, and A. Yamamoto: Mater. Sci. Eng. A, vol. 351, pp. 272-81 (2003).

    Article  Google Scholar 

Download references

The World Class 300 Project R&D Program supported the present work and the BK21 Plus Center for Creative Industrial Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, J., Choi, WM., Lee, BJ. et al. Replacement of Ni by Mn in Commercial High-Ni Austenitic Cast Steels Used for High-Performance Turbocharger Housings. Metall Mater Trans A 50, 2585–2593 (2019). https://doi.org/10.1007/s11661-019-05205-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05205-0

Navigation