Skip to main content
Log in

Electromigration-Enhanced Densification Kinetics During Spark Plasma Sintering of Tungsten Powder

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The traditional theory attributes the rapid densification of spark plasma sintering (SPS) to the thermal effect of electric current. However, the nonthermal effects of electric current are still not well understood, despite its proven significance. In this study, the mechanisms by which nonthermal effects contribute to the rapid densification of tungsten powder during SPS were investigated. Electromigration was considered as an important nonthermal effect of current, and an electromigration-enhanced creep model incorporating the contribution of temperature, pressure, and electric current on densification was constructed. The kinetics model agreed well with the experimental data and was applied to evaluate the contribution of electromigration during SPS quantitatively. Although the contribution of electric current is relatively minor compared with the temperature and pressure, it is a driving force to be reckoned with in densification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.H. Risbud and Y.H. Han: Scripta Mater., 2013, vol. 69, pp. 105–106.

    Article  Google Scholar 

  2. T.B. Hollan, U. Anselmi-Tamburini and A.K. Mukherjee: Scripta Mater., 2013, vol. 69, pp. 117–121.

    Article  Google Scholar 

  3. R. Li, T. Yuan, X. Liu and K. Zhou: Scripta Mater., 2016, vol. 110, pp. 105–108.

    Article  Google Scholar 

  4. Y.J. Lee, H.M. Sung, Y. Jin, K. Lee, C.R. Park, G.H. Kim and H.N. Han: Int. J. Refract. Met. Hard Mater., 2016, vol. 60, pp. 99–103.

    Article  Google Scholar 

  5. B. Mcwilliams, J. Yu, F. Kellogg and S. Kilczewski: Metall. Mater. Trans. A, 2016, vol. 48, pp. 1–11.

    Google Scholar 

  6. Z. Shen, M. Johnsson, Z. Zhao and M. Nygren: J. Am. Ceram. Soc., 2010, vol. 85, pp. 1921–1927.

    Article  Google Scholar 

  7. J.E. Garay: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 445–468.

    Article  Google Scholar 

  8. Z. Trzaska, G. Bonnefont, G. Fantozzi and J.P. Monchoux: Acta Mater., 2017, vol. 135, pp. 1–13.

    Article  Google Scholar 

  9. J. Langer, M.J. Hoffmann and O. Guillon: J. Am. Ceram. Soc., 2011, vol. 94, pp. 131–138.

    Google Scholar 

  10. C. Romaric, L.G. Sophie, N. Foad, C. Frédéric, B. Guillaume, F. Gilbert, C. Jean-Marc and B. Frédéric: J. Alloys Compd., 2017, vol. 69, pp. 2478–484.

    Google Scholar 

  11. L. Ramond, G. Bernard-Granger, A.C. Addad and C. Guizard: Acta Mater., 2010, vol. 58, pp. 5120-5128.

    Article  Google Scholar 

  12. A.M. Locci, A. Cincotti, S. Todde, R. Orrù and G. Cao: Sci. Technol. Adv. Mater., 2010, pp. 11045005.

  13. J.M. Frei, U. Anselmi-Tamburini and Z.A .Munir: J. Appl. Phys., 2007, vol. 101, pp. 114914-1-8.

    Article  Google Scholar 

  14. N. Toyofuku, T. Kuramoto, T. Imai, M. Ohyanagi and Z.A. Munir: J. Mater. Sci., 2012, vol. 47, pp. 2201–2205.

    Article  Google Scholar 

  15. E.V. Aleksandrova, A.M. Ilyina, E.G. Grigoryev and E.A. Olevsky: J. Am. Ceram. Soc., 2015, vol. 98, pp. 3509–3517.

    Article  Google Scholar 

  16. S.X. Song, Z. Wang and G.P. Shi: Ceram. Int., 2013, vol. 39, pp. 1393–1396.

    Article  Google Scholar 

  17. A. Becker, S. Angst, A. Schmitz and M. Engenhorst: Appl. Phys. Lett., 2012, vol. 101, pp. 445–354.

    Article  Google Scholar 

  18. S. Grasso, T. Saunders, H. Porwal and M. Reece: Ceram. Int., 2015, vol. 41, pp. 225–230.

    Article  Google Scholar 

  19. E. Olevsky and L. Froyen: Scripta Mater., 2006, vol. 55, pp. 1175–1178.

    Article  Google Scholar 

  20. G. Lee, E.A. Olevsky, C. Manière, A. Maximenko, O. Izhvanov, C. Back and J. McKittrick: Acta Mate., 2018, vol. 144, pp. 524–533.

    Article  Google Scholar 

  21. M. Omori: Mater. Sci. Eng. A, 2000, vol. 287, pp. 183–188.

    Article  Google Scholar 

  22. D.M. Hulbert, A. Anders, D.V. Dudinal, J. Andersson, D. Jiang, C. Unuvar, U. Anselmi-Tamburini, E.J. Lavernia and A.K. Mukherjee: J. Appl. Phys., 2008, vol. 104, pp. 033305-1–7.

    Article  Google Scholar 

  23. R. Chaim: J. Mater. Sci., 2008, vol. 48, pp. 502–510.

    Article  Google Scholar 

  24. Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang and Y.D. Wang: Scripta Mater., 2014, vol. 81, pp. 56–59.

    Article  Google Scholar 

  25. C.S. Bonifacio, T.B. Holland and K. Benthem: Scripta Mater., 2013, vol. 69, pp. 769–772.

    Article  Google Scholar 

  26. S. Deng, R. Li, T. Yuan, S. Xie, M. Zhang, K. Zhou and P. Cao: Scripta Mater., 2018, vol. 143, pp. 25–29.

    Article  Google Scholar 

  27. S.L. Robinson and O.D. Sherby: Acta Metall., 1969, vol. 17, pp. 109–125.

    Article  Google Scholar 

  28. A. T. English and E. Kinsbron: J. Appl. Phys., 1983, vol. 54, pp. 275–280.

    Article  Google Scholar 

  29. C.M. Chen and S.W. Chen: J. Electron. Mater., 1999, vol. 28, pp. 902–906.

    Article  Google Scholar 

  30. S.W. Chen, C.M. Chen and W.C. Liu: J. Electron. Mater., 1998, vol. 27, pp. 902–906.

    Google Scholar 

  31. J.R. Friedman, J.E. Garay, U. Anselmi-Tamburini and Z.A. Munir: Intermetallics, 2004, vol. 12, pp. 589–97.

  32. C. Collard, Z. Trzaska, L. Durand, J.M. Chaix and J.P. Monchoux: Powder Technol., 2017, vol. 321, pp. 458–470.

    Article  Google Scholar 

  33. D.S. Wilkinson and M.F. Ashby: Acta Metall., 1975, vol. 23, pp. 1277–1285.

    Article  Google Scholar 

  34. C. Yang, M.D. Zhu, X. Luo, L.H. Liu, W.W. Zhang, Y. Long, Z.Y. Xiao, Z.Q. Fu, L.C. Zhang and E.J. Lavernia: Scripta Mater., 2017, vol. 139, pp. 96–99.

    Article  Google Scholar 

  35. P.S. Ho and T. Kwok: Rep. Prog. Phys., 1999, vol. 52, pp. 301–348.

    Article  Google Scholar 

  36. S.S. Shao, F. Yang and Fu.Z. Xuan: Int. J. Appl. Electromagn. Mech., 2012, vol. 40, pp. 165–71.

  37. Z.H. Li, Y. Dong, S. Li, L.M. Xu, and J. Sun: Appl. Phys. Lett., 2007, vol. 91, pp. 191902.

    Article  Google Scholar 

  38. G. Lee, J. McKittrick, E. Ivanov and E.A. Olevsky: Int. J. Refract. Met. Hard Mater., vol. 61, pp. 22–29.

  39. G. Bernard-Granger and C. Guizard: Acta Mater., 2007, vol. 55, pp. 3493–3504.

    Article  Google Scholar 

  40. G. Bernard-Granger, A. Addad, G. Fantozzi, G. Bonnefont, C. Guizard and D. Vernat: Acta Mater., 2010, vol. 58, pp. 3390–3399.

    Article  Google Scholar 

  41. M. Gendre, A. Maître and G. Trolliard: Acta Mater., 2010, vol. 58, pp. 2598–2609.

    Article  Google Scholar 

  42. J.G. Santanach, A. Weibel, C. Estournès, Q. Yang, C. Laurent and A. Peigney: Acta Mater., 2011, vol. 59, pp. 1400–1408.

    Article  Google Scholar 

  43. M. Shatzkes and J.R. Lloyd: J. Appl. Phys., 1986, vol. 59, pp. 3890–3893.

    Article  Google Scholar 

  44. K.N. Tu, C.C. Yeh, C.Y. Liu and C. Chen: Appl. Phys. Lett., 2000, vol. 76, pp. 988–990.

    Article  Google Scholar 

  45. S. Deng, T. Yuan, R. Li, M. Zhang, S. Xie, M. Wang, L. Li, J. Yuan and Q. Weng: Int. J. Refract. Met. Hard Mater., 2018, vol. 75, pp. 184–190.

    Article  Google Scholar 

  46. M.I. Aivazov and I.A. Domashnev: Sov. Powder Metall. Met. Ceram., 1968, vol. 7, pp. 708–10.

    Article  Google Scholar 

  47. G.Q. Tong, K.C. Chan, L. Gao and Z.R. Lin: Mater. Sci. Eng. A, 2002, vol. 336, pp. 263–269.

    Article  Google Scholar 

  48. J.N. Wang: J. Struct. Geol., 1994, vol. 16, pp. 961–970.

    Article  Google Scholar 

  49. S. Deng, T. Yuan, R. Li, F. Zeng, G. Liu and X. Zhou: Powder Technol., 2017, vol. 310, pp. 264–271.

    Article  Google Scholar 

  50. O. El-Atwani, D.V. Quach, M. Efe, P.R. Cantwell, B. Heim, B. Schultz, E.A. Stach, J.R. Groza and J.P. Allain: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5670–5677.

    Article  Google Scholar 

  51. D.H. Bae and A.K. Ghosh: Acta Mater., 2000, vol. 48, pp. 1207–1224.

    Article  Google Scholar 

  52. G.P. Škoro, J.R.J. Bennett, T.R. Edgecock, S.A. Gray, A.J. McFarland, C.N. Booth, K.J. Rodgers and J.J. Back: J. Nucl. Mater., 2011, vol. 409, pp. 40–46.

    Article  Google Scholar 

  53. R. Lowrie and A.M. Gonas: J. Appl. Phys., 1967, vol. 38, pp. 4505–4509.

    Article  Google Scholar 

  54. B. Wilthan, C. Cagran and G. Pottlacher: Int. J. Thermophys., 2005, vol. 26, pp. 1017–1029.

    Article  Google Scholar 

  55. D.W. Richards, R.J. De Angelis, M.P. Kramer, J.W. House, D.A. Cunard and D.P. Shea: Powder Diffr., 2016, vol. 18, pp. 351–356.

    Google Scholar 

  56. F. Detraux, P. Ghosez and X. Gonze: Phys. Rev. B, 1997, vol. 56, pp. 983–985.

    Article  Google Scholar 

  57. B.R. Staples and R.L. Nuttall: J. Phys. Chem. Ref. Data, 1977, vol. 6, pp. 385–408.

    Article  Google Scholar 

  58. W.R. Cannon and T.G. Langdon: J. Mater. Sci., 1983, vol. 18, pp. 1–50.

    Article  Google Scholar 

  59. T.G. Langdon and F.A. Mohamed: Mater. Sci. Eng., 1987, vol. 32, pp. 103–112.

    Article  Google Scholar 

  60. F.A. Mohamed and T.G. Langdon: Metall. Trans., 1974, vol. 5, pp. 2339–2345.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the National Natural Science Foundation of China (51874369), the Hunan Natural Science Foundation (2018JJ3659).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruidi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 14, 2018.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Li, R., Yuan, T. et al. Electromigration-Enhanced Densification Kinetics During Spark Plasma Sintering of Tungsten Powder. Metall Mater Trans A 50, 2886–2897 (2019). https://doi.org/10.1007/s11661-019-05201-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05201-4

Navigation