Metallurgical and Materials Transactions A

, Volume 50, Issue 6, pp 2732–2747 | Cite as

Retention of Delta Ferrite in the Heat-Affected Zone of Grade 91 Steel Dissimilar Metal Welds

  • Michael W. KuperEmail author
  • Boian T. Alexandrov


This study aimed to determine the mechanism of δ-ferrite retention in the coarse-grained HAZ (CGHAZ) of Grade 91 steel dissimilar metal welds (DMWs) with Ni-based filler metals. This phenomenon was investigated in four DMWs made with cold-wire gas tungsten arc process using Alloys 625, 617, 82, and P87 filler metals. A narrow band of δ-ferrite grains was identified in the CGHAZ in all welds. It was hypothesized that δ-ferrite retention was caused by local carbon depletion in the CGHAZ, which was validated through extensive thermodynamic and kinetic simulations and metallurgical characterization. Carbon diffusion across the fusion boundary was driven by the carbon chemical potential gradient between Grade 91 steel and the Ni-based filler metals, which was facilitated by long high-temperature dwell times resulting from a difference in heat capacity and thermal conductivity between the base and filler metals. A linear relationship was established between the amounts of retained δ ferrite and the predicted carbon depletion in the CGHAZ of each DMW. Alloy 625 filler metal generated the largest extent of carbon depletion and the most retained δ ferrite, followed by Alloys 617, 82, and P87. The carbon depletion resulted in local softening of the CGHAZ martensite.



  1. 1.
    F. Masuyama and J. P. Shingledecker: Procedia Engineering, 2013, vol. 55, pp. 314-325.CrossRefGoogle Scholar
  2. 2.
    K. Maruyama, K. Sawada, and J. I. Koike: ISIJ International, 2001, vol. 41, pp. 641-653.CrossRefGoogle Scholar
  3. 3.
    C. Pan and Z. Zhang: Materials Characterization, 1996, vol. 36, pp. 5-10.CrossRefGoogle Scholar
  4. 4.
    J. N. DuPont: International Materials Reviews, 2012, vol. 57, pp. 208-234.CrossRefGoogle Scholar
  5. 5.
    R. Anand, C. Sudha, T. Karthikeyan, A. L. E. Terrance, S. Saroja, and M. Vijayalakshmi: Journal of Materials Science, 2008, vol. 44, pp. 257-265.CrossRefGoogle Scholar
  6. 6.
    R. Anand, C. Sudha, T. Karthikeyan, A. L. E. Terrance, S. Saroja, and M. Vijayalakshmi: Transactions of the Indian Institute of Metals, 2008, vol. 61, pp. 483-486.CrossRefGoogle Scholar
  7. 7.
    R. Viswanathan, R. I. Jaffee, and J. Dimmer: Annual Conference on Materials for Coal Conversion and Utilization (Proceedings), 1982, pp. 439–70.Google Scholar
  8. 8.
    D. Gandy and K. Coleman, Alternative filler materials for DMWs involving P91 materials, in EPRI Fifth International Conference—Advances in Materials Technology for Fossil Power Plants, Marco Island, Fl, 2007, pp. 940–67.Google Scholar
  9. 9.
    J. A. Siefert, J. M. Sanders, J. M. Tanzosh, W. F. Newell Jr, and J. P. Shingledecker: Materials at High Temperature, 2010, vol. 27, pp. 243-252.CrossRefGoogle Scholar
  10. 10.
    M. F. Dodge, H. B. Dong, and M. F. Gittos: Materials Research Innovations, 2014, vol. 18, pp. S4907-S4913.CrossRefGoogle Scholar
  11. 11.
    J. Clark: Ph.D. Dissertation, EFET EngD Centre, UON, Nottingham, UK, 2015.Google Scholar
  12. 12.
    J. Frei, B. T. Alexandrov, and M. Rethmeier: Welding in the World, 2016, vol. 60, pp. 459-473.CrossRefGoogle Scholar
  13. 13.
    M. K. Samal, M. Seidenfuss, E. Roos, and K. Balani: Engineering Failure Analysis, 2011, vol. 18, pp. 999-1008.CrossRefGoogle Scholar
  14. 14.
    B. T. Alexandrov, J. C. Lippold, J. W. Sowards, A. T. Hope, and D. R. Saltzmann: Welding in the World, 2012, vol. 57, pp. 39-53.CrossRefGoogle Scholar
  15. 15.
    G. J. Brentrup, B. S. Snowden, J. N. DuPont, and J. L. Grenestedt: Welding Journal, 2012, vol. 91, pp. 252S-259S.Google Scholar
  16. 16.
    Cracking in Thick-Section Dissimilar Metal Welds—Case Studies, EPRI, Palo Alto, CA. 2015.Google Scholar
  17. 17.
    J. Siefert, J. Parker, and T. Totemeier, 2016, p. V005T12A009.Google Scholar
  18. 18.
    M.W. Kuper, B.T. Alexandrov, M.J. Mills, and D.J. Burgess, Dissimilar metal welds in grade 91 steel, in 8th International Conference on Advances in Materials Technology for Fossil Power Plants, 2016, pp. 1199–1206.Google Scholar
  19. 19.
    B. Gsellmann, D. Halici, B. Krenmayr, C. Poletti, and B. Sonderegger, Thermomechanical investigation of the production process of a creep resistant martensitic steel, in 20th International ESAFORM Conference on Material Forming, ESAFORM 2017, 2017.Google Scholar
  20. 20.
    P. H. S. Cardoso, C. Kwietniewski, J. P. Porto, A. Reguly, and T. R. Strohaecker: Materials Science and Engineering A, 2003, vol. 351, pp. 1-8.CrossRefGoogle Scholar
  21. 21.
    P. Wang, S. P. Lu, N. M. Xiao, D. Z. Li, and Y. Y. Li: Materials Science and Engineering A, 2010, vol. 527, pp. 3210-3216.CrossRefGoogle Scholar
  22. 22.
    D. Carrouge, H. K. D. H. Bhadeshia, and P. Woollin: Science and Technology of Welding and Joining, 2004, vol. 9, pp. 377-389.CrossRefGoogle Scholar
  23. 23.
    K. Anderko, L. Schäfer, and E. Materna-Morris: Journal of Nuclear Materials, 1991, vol. 179-181, pp. 492-495.CrossRefGoogle Scholar
  24. 24.
    C. Pandey, M. M. Mahapatra, P. Kumar, and N. Saini: Materials Science and Engineering: A, 2018, vol. 712, pp. 720-737.CrossRefGoogle Scholar
  25. 25.
    S. Kobayashi, K. Sawada, T. Hara, H. Kushima, and K. Kimura: Materials Science and Engineering: A, 2014, vol. 592, pp. 241-248.CrossRefGoogle Scholar
  26. 26.
    M. L. Santella, R. W. Swindeman, R. W. Reed, and J. M. Tanzosh, Martensite transformation, microsegregation, and creep strength of 9 Cr-1 Mo-V steel weld metal, in ASM Proceedings of the International Conference: Trends in Welding Research, 2002, pp. 713–18.Google Scholar
  27. 27.
    S. H. Ryu and J. Yu: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, vol. 29, pp. 1573-1578.CrossRefGoogle Scholar
  28. 28.
    H. Schneider: Foundry Trade J., 1960, vol. 108, pp. 562-563.Google Scholar
  29. 29.
    F.C. Hull: Weld. J. (Miami, Fla), 1973, vol. 52, pp. 193s–203s.Google Scholar
  30. 30.
    M. Tamura, M. Inohara, K. Kusunoki, and Y. Tsuchida: Japan Iron and Steel Institute, 1984, vol. 70, p. S524.Google Scholar
  31. 31.
    J. Oñoro: Journal of Materials Processing Technology, 2006, vol. 180, pp. 137-142.CrossRefGoogle Scholar
  32. 32.
    B. Arivazhagan, G. Srinivasan, S. K. Albert, and A. K. Bhaduri: Fusion Engineering and Design, 2011, vol. 86, pp. 192-197.CrossRefGoogle Scholar
  33. 33.
    N. H. Jung, J. H. Ann, M. J. Lee, N. H. Kang, and K. M. Cho: Journal of Korean Institute of Metals and Materials, 2018, vol. 56, pp. 93-102.Google Scholar
  34. 34.
    J. M. Sosa, D. E. Huber, B. Welk, and H. L. Fraser: Integrating Materials and Manufacturing Innovation, 2014, vol. 3, p. 10.CrossRefGoogle Scholar
  35. 35.
    J. O. Andersson, T. Helander, L. Höglund, P. F. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273-312.CrossRefGoogle Scholar
  36. 36.
    H. Larsson and L. Höglund: Calphad, 2009, vol. 33, pp. 495-501.CrossRefGoogle Scholar
  37. 37.
    C. Wells, W. Batz, and R. F. Mehl: Trans. AIME, 1950, vol. 188.Google Scholar
  38. 38.
    C. A. Wert: Physical Review, 1950, vol. 79, pp. 601-605.CrossRefGoogle Scholar
  39. 39.
    C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, J. G. Thakre, R. S. Vidyarthy, et al.: Archives of Civil and Mechanical Engineering, 2018, vol. 18, pp. 713-722.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations