Skip to main content
Log in

Carbon-Dislocation Interaction-Induced Abnormal Strain-Rate Sensitivity in Twinning-Induced Plasticity Steels

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The existence of an abnormal transition in the strain-rate sensitivity of yield stress occurring at the strain rate \(\sim 0.05\) s–1 of a C-added twinning-induced plasticity (TWIP) steel is demonstrated for the first time. The theoretical model in this work shows that the yielding of C-added TWIP steels is governed by the kink-pair nucleation mechanism overcoming the pinning of C solutes at a critical strain rate. However, the yielding at quasi-static strain rates \(({\dot{\epsilon }}<0.05\) s–1) is controlled by the C solute dragging mechanism. The present model highlights the fundamental role of C-dislocation interaction in the deformation mechanism of TWIP steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. O. Bouaziz, H. Zurob, M. Huang: Steel Res. Int. 2013, vol.84 (10), pp. 937–947.

    Google Scholar 

  2. Z. Liang, X. Wang, W. Huang, M. Huang: Acta Mater. , vol. 88, pp. 170–179. (2015)

    Article  Google Scholar 

  3. P. Zhou, Z. Liang, M. Huang: Acta Mater. , vol. 149, pp. 407–15. (2018)

    Article  Google Scholar 

  4. B. C. De Cooman, Y. Estrin, S. K. Kim: Acta Mater. , vol. 142, pp. 283–362. (2018)

    Article  Google Scholar 

  5. L. Lu, R. Schwaiger, Z. Shan, M. Dao, K. Lu, S. Suresh: Acta Mater. 2005, vol. 53 (7), pp. 2169–2179.

    Article  Google Scholar 

  6. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall: Phys. Rev. Lett., 2008, vol. 100 (2), art. no. 025502.

  7. G. Regazzoni, U. Kocks, P. Follansbee: Acta Metall. 1987, vol. 35 (12), pp. 2865–2875.

    Article  Google Scholar 

  8. R.W. Armstrong, W. Arnold, and F.J. Zerilli: J. Appl. Phys., 2009, vol. 105 (2), art. no. 023511.

  9. M. Hiratani, E. Nadgorny: Acta Mater. 2001, vol. 49 (20), pp. 4337–4346.

    Article  Google Scholar 

  10. Y. Li, Z. Luo, Z. Liang, M. Huang: Acta Mater. 2019, vol. 165, pp. 278–293.

    Article  Google Scholar 

  11. L. Chen, H.-S. Kim, S.-K. Kim: ISIJ Int. 2007, vol. 47 (12), pp. 1804–1812.

    Article  Google Scholar 

  12. M. Kato, T. Fujii, S. Onaka: Mater. Trans. 2008, vol. 49 (6), pp. 1278–1283.

    Article  Google Scholar 

  13. Z. Liang, M. Huang: J. Mech. Phys. Solids 2015, vol. 85, pp. 128–142.

    Article  Google Scholar 

  14. A. M. Minor, S. S. Asif, Z. Shan, E. A. Stach, E. Cyrankowski, T. J. Wyrobek, O. L. Warren: Nat. Mater. 2006, vol. 5(9), p. 697.

    Article  Google Scholar 

  15. M. Maric, O. Muránsky, I. Karatchevtseva, T. Ungár, J. Hester, A. Studer, N. Scales, G. Ribárik, S. Primig, M. Hill: Corr. Sci. 2018, vol. 142, pp. 133–144.

    Article  Google Scholar 

  16. D. Caillard, J.-L. Martin: Thermally Activated Mechanisms In Crystal Plasticity: Vol. 8: Elsevier, 2003.

    Book  Google Scholar 

  17. S. Cheng, J. Spencer, W. Milligan: Acta Mater. 2003, vol. 51 (15), p. 4505–4518.

    Article  Google Scholar 

  18. J. Marian, W. Cai, V. V. Bulatov: Nature Materials 2004, vol. 3 (3), p. 158.

  19. P. Rodriguez: Metall. Mater. Trans A 2004, vol. 35A (9), pp. 2697–2705.

    Article  Google Scholar 

  20. W. Püschl: Progr. Mater. Sci. 2002, vol. 47 (4), pp. 415–461.

    Article  Google Scholar 

  21. A. Dumay, J.-P. Chateau, S. Allain, S. Migot, O. Bouaziz: Mater. Sci. Eng. A 2008, vol. 483, pp. 184–187.

    Article  Google Scholar 

  22. E. Ma: Science 2004, vol. 305 (5684), pp. 623–624.

    Article  Google Scholar 

  23. Y. Wang, A. Hamza, E. Ma: Acta Mater. 2006, vol. 54 (10), pp. 2715–2726.

    Article  Google Scholar 

  24. L. Proville, L. Ventelon, and D. Rodney: Phys. Rev. B, 2013, vol. 87 (14), art. no. 144106.

  25. M. K. Miller: Microsc. Res. Tech. 2006, vol. 69 (5), pp. 359–365.

    Article  Google Scholar 

  26. M. K. Miller: J. Mater. Sci. 2006, vol. 41 (23), pp. 7808–7813.

    Article  Google Scholar 

  27. M. Soare, W. Curtin: Acta Mater. 2008, vol. 56 (15), pp. 4091–4101.

    Article  Google Scholar 

  28. L. Kubin, Y. Estrin: Acta Metall. Mater. 1990, vol. 38 (5), pp. 697–708.

    Article  Google Scholar 

  29. L. Kubin, Y. Estrin, C. Perrier: Acta Metall. Mater. 1992, vol. 40 (5), pp. 1037–1044.

    Article  Google Scholar 

  30. J. P. Hirth, J. Lothe: Theory of Dislocations. Wiley 1982.

    Google Scholar 

  31. D.E. Jiang and E.A. Carter: Phys. Rev. B, 2003, vol. 67 (21), art. no. 214103.

Download references

M.X. Huang acknowledges the financial support from National Natural Science Foundation of China (Nos. U1764252, U1560204), National Key Research and Development Program of China (No. 2017YFB0304401) and Research Grants Council of Hong Kong (Nos. 17255016, 17203014, C7025-16G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 21, 2018.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 138 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.Z., Huang, M.X. Carbon-Dislocation Interaction-Induced Abnormal Strain-Rate Sensitivity in Twinning-Induced Plasticity Steels. Metall Mater Trans A 50, 2570–2575 (2019). https://doi.org/10.1007/s11661-019-05179-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05179-z

Navigation