Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2322–2330 | Cite as

Influence of Rapid Cooling Rate and Homogenization Temperature on the Ferrite Content and Microstructures of CD3MWCuN Castings

  • Longlong LiaoEmail author
  • Scott Chumbley


The influence of homogenization temperature and rapid cooling rate on the ferrite content and microstructures of CD3MWCuN was investigated using BSE-SEM images. For these experiments CD3MWCuN was homogenized at six different temperatures 1000 °C, 1050 °C, 1100 °C, 1150 °C, 1205 °C, and 1250 °C for 4 hours followed by air-cooling and water quenching. In addition to these samples two temperatures, namely 1150 °C and 1205 °C, were chosen and samples were cooled at the varying rates of 500 °C/h, 750°C/h, 850 °C/h, and 1000 °C/h. Determination of the resulting ferrite/austenite ratio revealed that homogenization temperature plays the dominant role in determining the final ferrite content. Slower cooling rates drop the amount of ferrite in a linear manner that is approximately constant for the different homogenization temperatures studied. An equation is proposed to predict the ferrite content covering the homogenization temperatures from 1000 °C to 1250 °C given that the initial ferrite amount present at the homogenization T is known.



This work was funded jointly by the Steel Founder Society of America and their members and the Iowa State University Center for Industrial Research and Service. Portions of this work were carried out using facilities present at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.


  1. 1.
    1. N.D. Ryan, H.J. Mcqueen, Mater. Sci. Eng., 1986, vol. 81, pp. 259-272.CrossRefGoogle Scholar
  2. 2.
    2. J.O. Nilsson, Mater. Sci. Technol, 1992, vol. 8, pp. 685-700.CrossRefGoogle Scholar
  3. 3.
    3. S. Atamert, J.E. King, Mater. Sci. Technol, 1992, vol. 8, pp. 896-911.CrossRefGoogle Scholar
  4. 4.
    4. C.D. Lundin, C.P.D. Chou, WRC Bulletin, 1983, vol. 289, pp. 1-80.Google Scholar
  5. 5.
    5. C.D. Lundin, W.T. Delong, D.F. Spond, Welding Research, 1975, vol. 54, pp. 241s-246s.Google Scholar
  6. 6.
    6. D.L. Olson, Welding Journal, 1985, vol 64, pp. 281s-295s.Google Scholar
  7. 7.
    7. J.M. Vitek, S.A. David, Welding Journal, 1986, vol 65, pp. 106s-111s.Google Scholar
  8. 8.
    8. M.B. Cortie, E.M. Jackson, Metall and Mater Trans A, 1997, vol 28A, pp. 2477-2484.CrossRefGoogle Scholar
  9. 9.
    9. A. Schaeffler, Metal Progress, 1949, vol 56, pp. 680-680B.Google Scholar
  10. 10.
    10. W.T. Delong, Welding Journal, 1974, vol 53, pp. 273s-286s.Google Scholar
  11. 11.
    11. D.J. Kotechi, T.A. Siewert, Welding Journal, 1992, vol 71, pp. 171s-178s.Google Scholar
  12. 12.
    12. J. Dupont, J.D. Farren, Corrosion, 2011, vol 67, pp. 055002-1-055002-11.CrossRefGoogle Scholar
  13. 13.
    13. N.S.L. Philips, L.S. Chumbley, B. Gleeson, J. Mat. Eng and Perf, 2009, vol 18, pp. 1285-1293.CrossRefGoogle Scholar
  14. 14.
    14. Y-J. Kim, O. Ugurlu, C. Jiang, B. Gleeson, L.S. Chumbley, Metall and Mater Trans A, 2007, vol 38, pp. 203-211.CrossRefGoogle Scholar
  15. 15.
    15. Y-J. Kim, L.S. Chumbley, B. Gleeson, Metall and Mater Trans A, 2004, vol 35A, pp. 3377-3386.CrossRefGoogle Scholar
  16. 16.
    16. P. Ferro, F. Bonollo, Metall. Mater. Trans. A, 2012, vol. 43, pp. 1109-1116.CrossRefGoogle Scholar
  17. 17.
    17. H. Sieurin, R. Sandstrom, Mat Sci Eng A, 2007, vol 444, pp. 271-276.CrossRefGoogle Scholar
  18. 18.
    18. H. Sieurin, R. Sandstrom, E. M. Westin: Metall and Mater Trans A, 2006, vol 37A, pp. 2975-2981.CrossRefGoogle Scholar
  19. 19.
    C. Muller, L. S. Chumbley: J. Mater. Eng. Perf., 2009, vol 19, pp. 714-720.CrossRefGoogle Scholar
  20. 20.
    20. J. N. Dupont, S.W. Banovic, A.R. Marder. Weld. Journal, 2003, vol 82, pp. 125-135.Google Scholar
  21. 21.
    21. L. Liao, S. Chumbley SN Appl. Sci, 2019, vol 1:123.CrossRefGoogle Scholar
  22. 22.
    22. M. Pohl, O. Storz, T. Glogowski, Materials Characterization, 2007, vol 58, pp. 65-71.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Material Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations