Skip to main content

Microstructural Analysis of the Laser-Cladded AISI 420 Martensitic Stainless Steel


This study investigates the microstructural evolution and phase transformation of laser-cladded AISI 420 martensitic stainless steel. The microstructural morphologies of the laser-cladded sample were examined using optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM) equipped with energy-dispersive spectroscopy. The three regions of bead zone, dilution zone, and an interface were investigated. The TEM study revealed various morphologies of martensitic phase in each region. The bead zone consisted of plate and lenticular martensite with internal twins, while lath and thin plate martensite and internal twins were presented in the dilution zone. Large lath martensite was observed in the interface zone the boundary between the dilution and heat-affected zones. The selected area electron diffraction identified those forms of martensite as the ά-martensite in three zones. Other microstructural features such as nano-carbide precipitates and high density of dislocations were also observed in each zone. The martensitic transformation with various morphologies provided crucial information about the development of residual stress throughout the three zones. It was concluded that due to the high cooling rate, the martensitic phase transformation first occurred in the bead zone with the formation of plate-like martensite. Combination of the plate and lath-like martensite formed subsequently in the dilution zone created high compressive stress in this zone and high tensile stress in the bead zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data are adopted from the authors’ earlier work[22]

Fig. 11

Reprinted with permission from Ref. [21]

Fig. 12

Data are adopted from the authors’ earlier work[1]

Fig. 13

Data are adopted from the authors’ earlier work[22]

Fig. 14

Data are adopted from the authors’ earlier work[1]


  1. 1.

    M.K. Alam, A. Edrisy, J. Urbanic, and J. Pineault: J. Mater. Eng. Perform., 2017, vol. 26, pp. 1076–84.

    Article  Google Scholar 

  2. 2.

    S.H. Baghjari and S.A.A.A. Mousavi: Mater. Des., 2013, vol. 43, pp. 1–9.

    Article  Google Scholar 

  3. 3.

    D. Lepski, F. Bruckner (2009). In: J. Dowden, ed., The Theory of Laser Materials Processing, vol. 119. Springer, Dordrecht. pp. 235–79.

    Chapter  Google Scholar 

  4. 4.

    S. K. Mishra (2013). In: S. Zhang and D. Zhao, eds., Aerospace materials handbook. CRC Press, New York.

    Google Scholar 

  5. 5.

    Toyserkani E, Khajepour A, Corbin SF: Laser cladding. CRC Press, New York, 2005.

    Google Scholar 

  6. 6.

    J. Chen, L. Xue, and S. Wang: in Materials Science and Technology (MS&T) 2008, Pittsburgh, Pennsylvania, 2008, pp. 1388–96.

  7. 7.

    M. Zhong and W. Liu (2010) Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 224, pp. 1041–60.

    Article  Google Scholar 

  8. 8.

    8 S. Bhattacharya, G.P. Dinda, A.K. Dasgupta, and J. Mazumder: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2309–18.

    Article  Google Scholar 

  9. 9.

    S. Da Sun, Q. Liu, M. Brandt, M. Janardhana, and G. Clark: in 28th international congress of the aeronautical sciences (ICAS), 2012, pp. 1–9.

  10. 10.

    10 I. Hemmati, V. Ocelík, and J.T.M. De Hosson: J. Mater. Sci., 2011, vol. 46, pp. 3405–14.

    Article  Google Scholar 

  11. 11.

    X. Wu: Surf. Coatings Technol., 1999, vol. 115, pp. 153–62.

    Article  Google Scholar 

  12. 12.

    M.K. Alam, J. Urbanic, S.M. Saqib, and A. Edrisy: in Materials science and technology conference proceedings (MS&T15), October 4–8, Columbus, OH, USA, 2015, pp. 35–54.

  13. 13.

    C. Köse and R. Kaçar: Mater. Des., 2014, vol. 64, pp. 221–6.

    Article  Google Scholar 

  14. 14.

    M.M.A. Khan, L. Romoli, R. Ishak, M. Fiaschi, G. Dini, and M. De Sanctis: Opt. Laser Technol., 2012, vol. 44, pp. 1611–9.

    Article  Google Scholar 

  15. 15.

    E. Weidmann: Struers Application Notes - Metallographic Preparation of Stainless Steel, Struers A/S, Copenhagen, 2005.

    Google Scholar 

  16. 16.

    J. Lippold and D. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, Wiley-Interscience, New Jersey, 2005, pp 56-86.

    Google Scholar 

  17. 17.

    A. Shibata, T. Murakami, S. Morito, T. Furuhara, and T. Maki: Mater. Trans. Japan Inst. Met., 2008, vol. 49, pp. 1242–8.

    Google Scholar 

  18. 18.

    J.W. Christian: J. Phys. Colloq., 1974, vol. 35, pp. C7-64.

    Article  Google Scholar 

  19. 19.

    J.W. Christian: in Physical properties of martensite and bainite, [Special Report] 93, The Iron and Steel Institute, 1965, pp. 1–25.

  20. 20.

    H.K.D.H. Bhadeshia and D.V. Edmonds: in International conference on martensitic transformation, Boston, USA, 1979, p. IV-9-13.

  21. 21.

    S. Kou: Welding Metallurgy, 2nd Ed., John Wiley & Sons, NJ, USA, 2003, pp 136-166.

    Google Scholar 

  22. 22.

    N. Nazemi, J. Urbanic, and M.K. Alam: Int. J. Adv. Manuf. Technol., 2017, vol. 93, pp. 3485–3503.

    Article  Google Scholar 

  23. 23.

    Z. Zhang, P. Farahmand, and R. Kovacevic: Mater. Des., 2016, vol. 109, pp. 686–99.

    Article  Google Scholar 

  24. 24.

    W. Kurz, C. Bezençon, and M. Gäumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185–91.

    Article  Google Scholar 

  25. 25.

    25 M.McGuire: Stainless Steels For Design Engineers, First Ed., ASM International, Material Park, Ohio, 2008, pp 123-36.

    Google Scholar 

  26. 26.

    P.K.S.E. Klar: Powder metallurgy stainless steels: processing, microstructures, and properties, ASM International, Material Park, 2007, pp 5–22.

    Google Scholar 

  27. 27.

    27 L. Costa, R. Vilar, T. Reti, R. Colaco, A.M. Deus, and I. Felde: Mater. Sci. Test. Informatics Ii, 2005, vol. 473–474, pp. 315–20.

    Google Scholar 

  28. 28.

    R. Naraghi: Royal Institute of Technology, Stockholm, Sweden, 2009.

  29. 29.

    H.J. French and Z. Klopsch: Initial temperature and mass effects in quenching, technologic papers of the bureau of standards, US Government, V19, T-295, 1922.

  30. 30.

    K.E. Easterling and P.R. Swann: in Mechanism of phase transformation, 1968, pp. 152–55.

  31. 31.

    31 D.J. Bacon, Y.N. Osetsky, and D. Rodney: Dislocations in Solids, 2009, vol. 15, pp. 1–90.

    Article  Google Scholar 

  32. 32.

    32 A. Dutta, M. Bhattacharya, and P. Barat: J. Appl. Phys., 2014, vol.116, pp. 143510-1-9

    Article  Google Scholar 

  33. 33.

    A. Keyhani and R. Roumina: arXiv:1711.01556, 2017, pp. 1–20.

  34. 34.

    34 W. Bin, L. Zhenyu, Z. Xiaoguang, W. Guodong, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 575, pp. 189–98.

    Article  Google Scholar 

  35. 35.

    35 A. Ramar and R. Schäublin: J. Nucl. Mater., 2013, vol. 432, pp. 323–33.

    Article  Google Scholar 

  36. 36.

    J. Fu, G. Li, X. Mao, K. Fang: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3797–3812.

    Article  Google Scholar 

  37. 37.

    37 B.A. Bilby: Proc. Phys. Soc. Sect. A, 1950, vol. 63, pp. 191–200.

    Article  Google Scholar 

  38. 38.

    38 E. Clouet, S. Garruchet, H. Nguyen, and M. Perez: Acta Mater., 2008, vol. 56, pp. 3450–60.

    Article  Google Scholar 

  39. 39.

    39 A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, and M.J. Alava: Sci. Rep., 2018, vol. 8, pp. 1–12.

    Article  Google Scholar 

  40. 40.

    P.M. Kelly and J. Nutting: in Physical properties of martensite and bainite [Special Report] 93, The Iron and Steel Institute, 1965.

  41. 41.

    41 E. Güler, T. Kirindi, and H. Aktas: J. Alloys Compd., 2007, vol. 440, pp. 168–72.

    Article  Google Scholar 

  42. 42.

    42 G. Krauss and A.R. Marder: Metall. Trans., 1971, vol. 2, pp. 2343–57.

    Article  Google Scholar 

  43. 43.

    43 Z. Nishiyama: Martensitic Transformations, Academic Press Inc., New York, 1978.

    Google Scholar 

  44. 44.

    44 Z. Nisrayama and K. Shimizu: J. Electronmicrosc., 1963, vol. 12, pp. 28–36.

    Google Scholar 

  45. 45.

    45 A. Weise and G. Fritsche: Mater. Manuf. Process., 1997, vol. 12, pp. 125–35.

    Article  Google Scholar 

  46. 46.

    Z. Hu and J. Zhao: Mater. Res. Express, 2018, vol. 5, p 096528.

    Article  Google Scholar 

  47. 47.

    U. de Oliveira, V. Ocelík, and J.T.M. De Hosson: Surf. Coatings Technol., 2006, vol. 201, pp. 533–42.

    Article  Google Scholar 

Download references


This research is partially funded by the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant. The authors would like to thank the laser cladding industry sponsor for the materials and experimental support it has provided for this research project. The authors acknowledge Professor Derek O. Northwood for reading the manuscript and providing his valuable comments. The authors also acknowledge Dr. Navid Nazemi (CAManufacturing Solutions Inc), Dr. Travis Casagrande, and Dr. Carmen Andrei (Canadian Centre for Electron Microscopy) for their help in providing simulation data, FIB and TEM imaging respectively.

Author information



Corresponding author

Correspondence to Afsaneh Edrisy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 11, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alam, M.K., Edrisy, A. & Urbanic, J. Microstructural Analysis of the Laser-Cladded AISI 420 Martensitic Stainless Steel. Metall Mater Trans A 50, 2495–2506 (2019).

Download citation