Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2495–2506 | Cite as

Microstructural Analysis of the Laser-Cladded AISI 420 Martensitic Stainless Steel

  • Mohammad K. Alam
  • Afsaneh EdrisyEmail author
  • Jill Urbanic
Article
  • 95 Downloads

Abstract

This study investigates the microstructural evolution and phase transformation of laser-cladded AISI 420 martensitic stainless steel. The microstructural morphologies of the laser-cladded sample were examined using optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM) equipped with energy-dispersive spectroscopy. The three regions of bead zone, dilution zone, and an interface were investigated. The TEM study revealed various morphologies of martensitic phase in each region. The bead zone consisted of plate and lenticular martensite with internal twins, while lath and thin plate martensite and internal twins were presented in the dilution zone. Large lath martensite was observed in the interface zone the boundary between the dilution and heat-affected zones. The selected area electron diffraction identified those forms of martensite as the ά-martensite in three zones. Other microstructural features such as nano-carbide precipitates and high density of dislocations were also observed in each zone. The martensitic transformation with various morphologies provided crucial information about the development of residual stress throughout the three zones. It was concluded that due to the high cooling rate, the martensitic phase transformation first occurred in the bead zone with the formation of plate-like martensite. Combination of the plate and lath-like martensite formed subsequently in the dilution zone created high compressive stress in this zone and high tensile stress in the bead zone.

Notes

Acknowledgments

This research is partially funded by the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant. The authors would like to thank the laser cladding industry sponsor for the materials and experimental support it has provided for this research project. The authors acknowledge Professor Derek O. Northwood for reading the manuscript and providing his valuable comments. The authors also acknowledge Dr. Navid Nazemi (CAManufacturing Solutions Inc), Dr. Travis Casagrande, and Dr. Carmen Andrei (Canadian Centre for Electron Microscopy) for their help in providing simulation data, FIB and TEM imaging respectively.

References

  1. 1.
    M.K. Alam, A. Edrisy, J. Urbanic, and J. Pineault: J. Mater. Eng. Perform., 2017, vol. 26, pp. 1076–84.CrossRefGoogle Scholar
  2. 2.
    S.H. Baghjari and S.A.A.A. Mousavi: Mater. Des., 2013, vol. 43, pp. 1–9.CrossRefGoogle Scholar
  3. 3.
    D. Lepski, F. Bruckner (2009). In: J. Dowden, ed., The Theory of Laser Materials Processing, vol. 119. Springer, Dordrecht. pp. 235–79.CrossRefGoogle Scholar
  4. 4.
    S. K. Mishra (2013). In: S. Zhang and D. Zhao, eds., Aerospace materials handbook. CRC Press, New York.Google Scholar
  5. 5.
    Toyserkani E, Khajepour A, Corbin SF: Laser cladding. CRC Press, New York, 2005.Google Scholar
  6. 6.
    J. Chen, L. Xue, and S. Wang: in Materials Science and Technology (MS&T) 2008, Pittsburgh, Pennsylvania, 2008, pp. 1388–96.Google Scholar
  7. 7.
    M. Zhong and W. Liu (2010) Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 224, pp. 1041–60.CrossRefGoogle Scholar
  8. 8.
    8 S. Bhattacharya, G.P. Dinda, A.K. Dasgupta, and J. Mazumder: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2309–18.CrossRefGoogle Scholar
  9. 9.
    S. Da Sun, Q. Liu, M. Brandt, M. Janardhana, and G. Clark: in 28th international congress of the aeronautical sciences (ICAS), 2012, pp. 1–9.Google Scholar
  10. 10.
    10 I. Hemmati, V. Ocelík, and J.T.M. De Hosson: J. Mater. Sci., 2011, vol. 46, pp. 3405–14.CrossRefGoogle Scholar
  11. 11.
    X. Wu: Surf. Coatings Technol., 1999, vol. 115, pp. 153–62.CrossRefGoogle Scholar
  12. 12.
    M.K. Alam, J. Urbanic, S.M. Saqib, and A. Edrisy: in Materials science and technology conference proceedings (MS&T15), October 4–8, Columbus, OH, USA, 2015, pp. 35–54.Google Scholar
  13. 13.
    C. Köse and R. Kaçar: Mater. Des., 2014, vol. 64, pp. 221–6.CrossRefGoogle Scholar
  14. 14.
    M.M.A. Khan, L. Romoli, R. Ishak, M. Fiaschi, G. Dini, and M. De Sanctis: Opt. Laser Technol., 2012, vol. 44, pp. 1611–9.CrossRefGoogle Scholar
  15. 15.
    E. Weidmann: Struers Application Notes - Metallographic Preparation of Stainless Steel, Struers A/S, Copenhagen, 2005.Google Scholar
  16. 16.
    J. Lippold and D. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, Wiley-Interscience, New Jersey, 2005, pp 56-86.Google Scholar
  17. 17.
    A. Shibata, T. Murakami, S. Morito, T. Furuhara, and T. Maki: Mater. Trans. Japan Inst. Met., 2008, vol. 49, pp. 1242–8.Google Scholar
  18. 18.
    J.W. Christian: J. Phys. Colloq., 1974, vol. 35, pp. C7-64.CrossRefGoogle Scholar
  19. 19.
    J.W. Christian: in Physical properties of martensite and bainite, [Special Report] 93, The Iron and Steel Institute, 1965, pp. 1–25.Google Scholar
  20. 20.
    H.K.D.H. Bhadeshia and D.V. Edmonds: in International conference on martensitic transformation, Boston, USA, 1979, p. IV-9-13.Google Scholar
  21. 21.
    S. Kou: Welding Metallurgy, 2nd Ed., John Wiley & Sons, NJ, USA, 2003, pp 136-166.Google Scholar
  22. 22.
    N. Nazemi, J. Urbanic, and M.K. Alam: Int. J. Adv. Manuf. Technol., 2017, vol. 93, pp. 3485–3503.CrossRefGoogle Scholar
  23. 23.
    Z. Zhang, P. Farahmand, and R. Kovacevic: Mater. Des., 2016, vol. 109, pp. 686–99.CrossRefGoogle Scholar
  24. 24.
    W. Kurz, C. Bezençon, and M. Gäumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185–91.CrossRefGoogle Scholar
  25. 25.
    25 M.McGuire: Stainless Steels For Design Engineers, First Ed., ASM International, Material Park, Ohio, 2008, pp 123-36.Google Scholar
  26. 26.
    P.K.S.E. Klar: Powder metallurgy stainless steels: processing, microstructures, and properties, ASM International, Material Park, 2007, pp 5–22.Google Scholar
  27. 27.
    27 L. Costa, R. Vilar, T. Reti, R. Colaco, A.M. Deus, and I. Felde: Mater. Sci. Test. Informatics Ii, 2005, vol. 473–474, pp. 315–20.Google Scholar
  28. 28.
    R. Naraghi: Royal Institute of Technology, Stockholm, Sweden, 2009.Google Scholar
  29. 29.
    H.J. French and Z. Klopsch: Initial temperature and mass effects in quenching, technologic papers of the bureau of standards, US Government, V19, T-295, 1922.Google Scholar
  30. 30.
    K.E. Easterling and P.R. Swann: in Mechanism of phase transformation, 1968, pp. 152–55.Google Scholar
  31. 31.
    31 D.J. Bacon, Y.N. Osetsky, and D. Rodney: Dislocations in Solids, 2009, vol. 15, pp. 1–90.CrossRefGoogle Scholar
  32. 32.
    32 A. Dutta, M. Bhattacharya, and P. Barat: J. Appl. Phys., 2014, vol.116, pp. 143510-1-9  https://doi.org/10.1063/1.4897657.CrossRefGoogle Scholar
  33. 33.
    A. Keyhani and R. Roumina: arXiv:1711.01556, 2017, pp. 1–20.
  34. 34.
    34 W. Bin, L. Zhenyu, Z. Xiaoguang, W. Guodong, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 575, pp. 189–98.CrossRefGoogle Scholar
  35. 35.
    35 A. Ramar and R. Schäublin: J. Nucl. Mater., 2013, vol. 432, pp. 323–33.CrossRefGoogle Scholar
  36. 36.
    J. Fu, G. Li, X. Mao, K. Fang: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3797–3812.CrossRefGoogle Scholar
  37. 37.
    37 B.A. Bilby: Proc. Phys. Soc. Sect. A, 1950, vol. 63, pp. 191–200.CrossRefGoogle Scholar
  38. 38.
    38 E. Clouet, S. Garruchet, H. Nguyen, and M. Perez: Acta Mater., 2008, vol. 56, pp. 3450–60.CrossRefGoogle Scholar
  39. 39.
    39 A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, and M.J. Alava: Sci. Rep., 2018, vol. 8, pp. 1–12.CrossRefGoogle Scholar
  40. 40.
    P.M. Kelly and J. Nutting: in Physical properties of martensite and bainite [Special Report] 93, The Iron and Steel Institute, 1965.Google Scholar
  41. 41.
    41 E. Güler, T. Kirindi, and H. Aktas: J. Alloys Compd., 2007, vol. 440, pp. 168–72.CrossRefGoogle Scholar
  42. 42.
    42 G. Krauss and A.R. Marder: Metall. Trans., 1971, vol. 2, pp. 2343–57.CrossRefGoogle Scholar
  43. 43.
    43 Z. Nishiyama: Martensitic Transformations, Academic Press Inc., New York, 1978.Google Scholar
  44. 44.
    44 Z. Nisrayama and K. Shimizu: J. Electronmicrosc., 1963, vol. 12, pp. 28–36.Google Scholar
  45. 45.
    45 A. Weise and G. Fritsche: Mater. Manuf. Process., 1997, vol. 12, pp. 125–35.CrossRefGoogle Scholar
  46. 46.
    Z. Hu and J. Zhao: Mater. Res. Express, 2018, vol. 5, p 096528.CrossRefGoogle Scholar
  47. 47.
    U. de Oliveira, V. Ocelík, and J.T.M. De Hosson: Surf. Coatings Technol., 2006, vol. 201, pp. 533–42.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Mohammad K. Alam
    • 1
  • Afsaneh Edrisy
    • 1
    Email author
  • Jill Urbanic
    • 2
  1. 1.Materials Engineering Graduate Program, Department of Mechanical, Automotive and Materials EngineeringUniversity of WindsorWindsorCanada
  2. 2.Industrial Engineering Graduate Program, Department of Mechanical, Automotive and Materials EngineeringUniversity of WindsorWindsorCanada

Personalised recommendations