Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2235–2245 | Cite as

Fast Isothermal Solidification During Transient Liquid Phase Bonding of a Nickel Alloy Using Pure Copper Filler Metal: Solubility vs Diffusivity

  • Ali Ghasemi
  • Majid PouranvariEmail author
Article
  • 79 Downloads

Abstract

This investigation aims at understanding the underlying fundamentals of the isothermal solidification phenomenon during the transient liquid phase (TLP) bonding process. The isothermal solidification is governed by solid-state diffusion of the melting point depressant (MPD) into the base material, which, in turn, is controlled by both kinetic and thermodynamic parameters; however, the latter factor is generally ignored. In this work, the competition between kinetics and thermodynamics of diffusion were considered in TLP bonding of a nickel alloy, Monel 400, using two distinct filler metals including pure copper (Cu) and Ni-Si-B filler metal. The joint generated by Ni-Si-B filler metal exhibited two key features including the presence of eutectic-type solidification products, an indication of incomplete isothermal solidification, and the presence of liquated grain boundaries in the substrate. However, the joint generated using pure Cu filler metal exhibited neither liquated grain boundaries nor precipitates in the diffusion-affected zone (DAZ). Interestingly, a fast isothermal solidification was observed when bonding using Cu filler metal. Despite the lower diffusivity of Cu, as a substitutional MPD in Ni-base substrate, compared to that of B, as an interstitial MPD, its higher solid solubility in the substrate provides a larger thermodynamic driving force for diffusion-induced isothermal solidification. Moreover, due to the high partitioning ratio of Cu in the Ni-base substrate and, hence, the lower difference between MPD solubility in liquid and solid phases, the required number of MPD atoms that should diffuse from the liquid phase into the base metal (BM) to complete isothermal solidification is much lower than that of B-containing filler metals. Therefore, both diffusivity and solubility of the MPD element should be considered in filler metal selection for achieving a fast isothermal solidification during TLP bonding.

Notes

References

  1. 1.
    M. Kapoor, Ö.N. Doğan, C.S. Carney, R.V. Saranam, P. McNeff, and B.K. Paul: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3343–56.CrossRefGoogle Scholar
  2. 2.
    O.A. Ojo: J. Mater. Sci., 2012, vol. 47, pp. 1598–1602.CrossRefGoogle Scholar
  3. 3.
    O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2787–96.CrossRefGoogle Scholar
  4. 4.
    N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, and Z.Q. Hu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1793–1804.CrossRefGoogle Scholar
  5. 5.
    M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Compd., 2013, vol. 563, pp. 143–49.CrossRefGoogle Scholar
  6. 6.
    D.S. Duvall: Weld. J., 1974, vol. 43, pp. 203–14.Google Scholar
  7. 7.
    W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.CrossRefGoogle Scholar
  8. 8.
    Y. Zhou, W.F. Gale, and T.H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181–96.CrossRefGoogle Scholar
  9. 9.
    W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.CrossRefGoogle Scholar
  10. 10.
    C.W. Sinclair: J. Phase Equilibria, 1999, vol. 20, p. 361.CrossRefGoogle Scholar
  11. 11.
    M. Khakian, S. Nategh, and S. Mirdamadi: J. Alloy. Compd., 2015, vol. 653, pp. 386–94.CrossRefGoogle Scholar
  12. 12.
    M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher: Mater. Sci. Eng. A, 2007, vol. 447, pp. 125–33.CrossRefGoogle Scholar
  13. 13.
    N.P. Wikstrom, A.T. Egbewande, and O.A. Ojo: J. Alloy Compd., 2008, vol. 460, pp. 379–85.CrossRefGoogle Scholar
  14. 14.
    A. Ghoneim and O.A. Ojo: Mater. Charact., 2011, vol. 62, pp. 1–7.CrossRefGoogle Scholar
  15. 15.
    M. Pouranvari, A. Ekrami, and A.H. Kokabi: Can. Metall. Q., 2014, vol. 53, pp. 38–46.CrossRefGoogle Scholar
  16. 16.
    O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 532–40.CrossRefGoogle Scholar
  17. 17.
    M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy Compd., 2009, vol. 469, pp. 270–75.CrossRefGoogle Scholar
  18. 18.
    M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Technol., 2013, vol. 29, pp. 980–84.CrossRefGoogle Scholar
  19. 19.
    O.A. Ojo, N.L. Richards, and M.C. Charturvedi: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 209–20.CrossRefGoogle Scholar
  20. 20.
    G.O. Cook and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23.CrossRefGoogle Scholar
  21. 21.
    M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Comp., 2008, Vol. 461, pp. 641–47.CrossRefGoogle Scholar
  22. 22.
    F. Jalilian, M. Jahazi, and R.A.L. Drew: Mater. Sci. Eng. A, 2006, vol. 423, pp. 269–81.CrossRefGoogle Scholar
  23. 23.
    M. Mosallaee, A. Ekrami, K. Ohsasa, and K. Matsuura: Metall. Mater. Trans. A, 2008, vol. 39A, p. 2389.CrossRefGoogle Scholar
  24. 24.
    S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3545–53.CrossRefGoogle Scholar
  25. 25.
    A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, in press.Google Scholar
  26. 26.
    T.C. Illingworth, I.O. Golosnoy, and T.W. Clyne: Mater. Sci. Eng. A, 2007, vol. 445, pp. 493–500.CrossRefGoogle Scholar
  27. 27.
    T. Shinmura, K. Ohsasa, and T. Narita: Mater. Trans., 2001, vol. 42, pp. 292–97.CrossRefGoogle Scholar
  28. 28.
    J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte: J. Mater. Process. Technol., 2013, vol. 213, pp. 20–29.CrossRefGoogle Scholar
  29. 29.
    A. Ghoneim and O.A. Ojo: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 900–11.CrossRefGoogle Scholar
  30. 30.
    O.A. Ojo and O. Aina: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1481–85.CrossRefGoogle Scholar
  31. 31.
    D.R. Askeland and P.P. Phulé: The Science and Engineering of Materials, Brooks/Cole-Thomson Learning, Monterey, CA, 2003.Google Scholar
  32. 32.
    O.A. Idowu, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2005, vol. 397, pp. 98–112.CrossRefGoogle Scholar
  33. 33.
    N.P. Wikstrom, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2006, vol. 417, pp. 299–306.CrossRefGoogle Scholar
  34. 34.
    R. Bakhtiari, A. Ekrami, and T.I. Khan: Mater. Sci. Eng. A, 2012, vol. 546, pp. 291–300.CrossRefGoogle Scholar
  35. 35.
    R.K. Saha and T.I. Khan: J. Mater. Eng. Perform., 2006, vol. 15, pp. 722–28.CrossRefGoogle Scholar
  36. 36.
    B. Abbasi-Khazaei, G. Asghari, and R. Bakhtiari: Weld. J., 2016, 95, 68–76.Google Scholar
  37. 37.
    H. Kokawa, C.H. Lee, and T.H. North: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1627–31.CrossRefGoogle Scholar
  38. 38.
    M. Pouranvari, A. Ekrami, and A.H. Kokabi: Sci. Technol. Weld. Join., 2018, vol. 1, pp. 13–18.CrossRefGoogle Scholar
  39. 39.
    A.G. Bigvand, O.A. Ojo: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1670–74.CrossRefGoogle Scholar
  40. 40.
    M.M. Abdelfatah and O.A. Ojo: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 377–85.CrossRefGoogle Scholar
  41. 41.
    A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 441–48.CrossRefGoogle Scholar
  42. 42.
    W.G. Moffatt: The Handbook of Binary Phase Diagrams, vols. 1, General Electric Co., Schenectady, NY, 1976.Google Scholar
  43. 43.
    W.F. Gale and E.R. Wallach: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2451–57.CrossRefGoogle Scholar
  44. 44.
    S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2226–32.CrossRefGoogle Scholar
  45. 45.
    D.J. Chakrabarti and D.E. Laughlin: J. Phase Equilib., 1982, vol. 3, pp. 45–48.CrossRefGoogle Scholar
  46. 46.
    J.C. Lippold, S.D. Kiser, and J.N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, New York, NY, 2011.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations