Skip to main content
Log in

Designing High Entropy Alloys with Dual fcc and bcc Solid-Solution Phases: Structures and Mechanical Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High entropy alloys (HEAs) with a single fcc phase are usually ductile but not strong, while HEAs with a single bcc phase have high strength but low ductility. Therefore, the combination of fcc and bcc phases was adopted to optimize the mechanical properties. Based on a latest data collection of reported HEAs with a single fcc phase, with dual fcc and bcc phases, and with a single bcc phase, the current work shows that the average valence electron concentration (VEC) and its standard deviation (δVEC) can describe quantitatively phase selection between the fcc and bcc phases in HEAs. Highest (lowest) hardness, highest (lowest) strength, and lowest (highest) ductility were found at the same critical value of VEC* ≈ 6.13 (δVEC* ≈ 0.207), which corresponds to the HEA with a single bcc (fcc) phase. The current work provides some quantitative rules for designing HEAs with dual fcc and bcc phases as well as modulating strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 213–18.

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  Google Scholar 

  3. M.H. Tsai and J.W. Yeh: Mater. Res. Lett., 2014, vol. 2, pp. 107–23.

    Article  Google Scholar 

  4. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: Science, 2014, vol. 345, pp. 1153–58.

    Article  Google Scholar 

  5. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Nature, 2016, vol. 534, pp. 227–30.

    Article  Google Scholar 

  6. Y. Zou, H. Ma, and R. Spolenak: Nat. Comm., 2015, vol. 6, p. 7748.

    Article  Google Scholar 

  7. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh: Acta Mater., 2011, vol. 59, pp. 6308–17.

    Article  Google Scholar 

  8. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  Google Scholar 

  9. A. Abu-Odeh, E. Galvan, T. Kirk, H. Mao, Q. Chen, P. Mason, R. Malak, and R. Arróyave: Acta Mater., 2018, vol. 152, pp. 41–57.

    Article  Google Scholar 

  10. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lü: Progr. Mater. Sci., 2014, vol. 61, pp. 1–93.

    Article  Google Scholar 

  11. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lü: Progr. Mater. Sci., 2014, vol. 61, pp. 1–93.

    Article  Google Scholar 

  12. E.J. Pickering and N.G. Jones: Int. Mater. Rev., 2016, vol. 61, pp. 183–202.

    Article  Google Scholar 

  13. M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, and J.A. Hawk: Curr. Opin: Solid State Mater. Sci., 2017, vol. 21, pp. 238–51.

    Google Scholar 

  14. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Adv. Eng. Mater., 2018, vol. 10, pp. 534–38.

    Article  Google Scholar 

  15. X. Yang and Y. Zhang: Mater. Chem. Phys., 2012, vol. 132, pp. 233–38.

    Article  Google Scholar 

  16. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino: Mater. Trans., 2014, vol. 55, pp. 165–70.

    Article  Google Scholar 

  17. S. Guo and C.T. Liu: Progr. Nat. Sci. Mater. Int., 2011, vol. 21, pp. 433–46.

    Article  Google Scholar 

  18. S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, p. 103505.

    Article  Google Scholar 

  19. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh: Mater. Res. Lett., 2013, vol. 1, pp. 207–12.

    Article  Google Scholar 

  20. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh: Mater. Res. Lett., 2013, vol. 1, pp. 207–12.

    Article  Google Scholar 

  21. M.H. Tsai, K.C. Chang, J.H. Li, R.C. Tsai, and A.H. Cheng: Mater. Res. Lett., 2016, vol. 4, pp. 90–95.

    Article  Google Scholar 

  22. F.Y. Tian, L.K. Varga, N.X. Chen, J. Shen, and L. Vitos: Intermetallics, 2015, vol. 58, pp. 1–6.

    Article  Google Scholar 

  23. X. Yang and Y. Zhang: Mater. Chem. Phys., 2012, vol. 132, pp. 233–38.

    Article  Google Scholar 

  24. M.G. Poletti and L. Battezzati: Acta Mater., 2014, vol. 75, pp. 97–306.

    Article  Google Scholar 

  25. A.K. Singh and A. Subramaniam: J. Alloys Compd., 2014, vol. 587, pp. 113–19.

    Article  Google Scholar 

  26. Q.W. Xing and Y. Zhang: Chin. Phys. B, 2017, vol. 26, p. 018104.

    Article  Google Scholar 

  27. Z.J. Wang, W.F. Qiu, Y. Yang, and C.T. Liu: Intermetallics, 2015, vol. 64, pp. 63–69.

    Article  Google Scholar 

  28. Z.J. Wang, Y.H. Huang, Y. Yang, J.C. Wang, and C.T. Liu: Scripta Mater., 2015, vol. 94, pp. 28–31.

    Article  Google Scholar 

  29. Y.F. Ye, C.T. Liu, and Y. Yang: Acta Mater., 2015, vol. 94, pp. 152–61.

    Article  Google Scholar 

  30. A.K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam: Intermetallics, 2014, vol. 53, pp. 112–19.

    Article  Google Scholar 

  31. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino: Entropy, 2013, vol. 15, pp. 3810–21.

    Article  Google Scholar 

  32. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang: Scripta Mater., 2015, vol. 104, pp. 53–55.

    Article  Google Scholar 

  33. A.B. Melnick and V.K. Soolshenko: J. Alloys Compd., 2017, vol. 694, pp. 223–27.

    Article  Google Scholar 

  34. O.N. Senkov and D.B. Miracle: J. Alloys Compd., 2016, vol. 658, pp. 603–07.

    Article  Google Scholar 

  35. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang: Mater. Today, 2015, vol. 19, pp. 349–62.

    Article  Google Scholar 

  36. Q.F. He, Y.F. Ye, and Y. Yang: J. Appl. Phys., 2016, vol. 120, p. 154902.

    Article  Google Scholar 

  37. S. Tripathy, G. Gupta, and S.G. Chowdhury: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 7–17.

    Article  Google Scholar 

  38. Y.M. Tan, J.S. Li, Z.W. Tang, J. Wang, and H.C. Kou: J. Alloys Compd., 2018, vol. 742, pp. 430–41.

    Article  Google Scholar 

  39. Y.M. Tan, J.S. Li, Z.W. Tang, J. Wang, and H.C. Kou: submitted for publication.

  40. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner: CALPHAD, 2014, vol. 5, pp. 1–10.

    Article  Google Scholar 

  41. O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward: Nat. Comm., 2015, vol. 6, p. 6529.

    Article  Google Scholar 

  42. G. Bracq, M. Laurent-Brocq, L. Perrière, R. Pirès, J.M. Joubert, and I. Guillot: Acta Mater., 2017, vol. 128, pp. 327–36.

    Article  Google Scholar 

  43. F. Tian, L. Delczeg, N. Chen, L. K. Varga, J. Shen, and L. Vitos: Phys. Rev. B, 2013, vol. 88, p. 085128.

    Article  Google Scholar 

  44. P. Singh, A.V. Smirnov, and D.D. Johnson: Phys. Rev. B, 2015, vol. 91, p. 224204.

    Article  Google Scholar 

  45. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe: Acta Mater., 2015, vol. 100, pp. 90–97.

    Article  Google Scholar 

  46. C. Jiang and B.P. Uberuaga: Phys. Rev. Lett., 2016, vol. 116, p. 105501.

    Article  Google Scholar 

  47. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks: Phys. Rev. X, 2015, vol. 5, p. 011041.

    Google Scholar 

  48. D.J.M. King, S.C. Middleburgh, A.G. McGregor, and M.B. Cortie: Acta Mater., 2016, vol. 104, pp. 172–79.

    Article  Google Scholar 

  49. Y. Wang, M. Yan, Q. Zhu, W.Y. Wang, Y.D. Wu, X.D. Hui, R. Otis, S.L. Shang, Z.K. Liu, and L.Q. Chen: Acta Mater., 2018, vol. 143, pp. 88–101.

    Article  Google Scholar 

  50. S. Guo, C. Ng, and C.T. Liu: J. Alloy Compd., 2013, vol. 557, pp. 77–81.

    Article  Google Scholar 

  51. Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li: Sci. Rep., 2014, vol. 4, p. 6200.

    Article  Google Scholar 

  52. Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li: Acta Mater., 2017, vol. 124, pp. 143–50.

    Article  Google Scholar 

  53. Y. Dong, X.X. Gao, Y.P. Lu, T.M. Wang, and T.J. Li: Mater. Lett., 2016, vol. 169, pp. 62–64.

    Article  Google Scholar 

  54. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu: Acta Mater., 2014, vol. 62, pp. 105–13.

    Article  Google Scholar 

  55. J.W. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.C. Chen: Wear, 2006, vol. 261, pp. 513–19.

    Article  Google Scholar 

  56. R.R. Chen, G. Qin, H.T. Zheng, L. Wang, Y.Q. Su, Y.L. Chiu, H.S. Ding, J.J. Guo, and H.Z. Fu: Acta Mater., 2018, vol. 144, pp. 129–37.

    Article  Google Scholar 

  57. U. Mizutani: Hume–Rothery Rules for Structurally Complex Alloy Phases, CRC Press, Boca Raton, FL, 2010.

    Book  Google Scholar 

  58. A. Takeuchi and A. Inoue: Mater. Trans. JIM, 2000, vol. 41, pp. 1372–78.

    Article  Google Scholar 

  59. A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817–29.

    Article  Google Scholar 

  60. A. Takeuchi and A. Inoue: Mater. Sci. Eng. A, 2001, vols. 304–306, pp. 446–51.

    Article  Google Scholar 

  61. G.A. Mansoor, N.F. Carnahan, K.E. Starling, and T.W. Leland: J. Chem. Phys., 1971, vol. 54, pp. 1523–25.

    Article  Google Scholar 

  62. Y. Zhang, X.H. Yan, W.B. Liao, and K. Zhao: Entropy, 2018, vol. 20, p. 624.

    Article  Google Scholar 

  63. Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh: J. Alloys Compd., 2009, vol. 488, pp. 57–64.

    Article  Google Scholar 

  64. C.J. Tong, Y.L. Chen, and J.W. Yeh: Metall. Mater. Trans. A, 2006, vol. 36A, pp. 1263–71.

    Google Scholar 

  65. F.J. Wang, Y. Zhang, and G.L. Chen: J. Alloys Compd., 2009, vol. 478, pp. 321–32.

    Article  Google Scholar 

  66. N. Liu, C. Chen, I.T.H. Chang, P. J. Zhou, and X.J. Wang: Materials, 2018, vol. 11, pp. 1290, 1–11.

Download references

Acknowledgments

This work was done under the Huo Yingdong Young Teacher Fund (Grant No. 151048), the Science Fund for Distinguished Young Scholars from Shaanxi province (Grant No. 2018-JC007), and the Fundamental Research Funds for the Central Universities. The authors appreciate Dr. Vipul Bhardwaj for reading and polishing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 8, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Zhang, S., Cai, R. et al. Designing High Entropy Alloys with Dual fcc and bcc Solid-Solution Phases: Structures and Mechanical Properties. Metall Mater Trans A 50, 1888–1901 (2019). https://doi.org/10.1007/s11661-019-05131-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05131-1

Navigation