Skip to main content
Log in

Growth of Spheroidal Graphite on Nitride Nuclei: Disregistry and Crystallinity During Early Growth

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The graphite phase resulting from the stable solidification of iron-carbon-silicon alloys can have a variety of morphologies, from lamellar to spheroidal, including undesired degenerated morphologies. Spheroidal graphite is preferred when high strength and ductility are required. Understanding the nucleation and growth mechanism of graphite will improve control of its morphology during industrial processing. The crystalline structure of spheroidal graphite in iron-carbon-silicon alloys exhibits a multi-regions substructure. Literature opinions on the degree of crystallinity of the core of the spheroid are divergent. Unconvincing explanations are offered. The ability of nitrides to serve as graphite nuclei is questioned because of the high linear disregistry. To bring some clarity into the early crystallization of graphite in iron melts, interrupted solidification samples were examined through scanning electron microscopy. Disregistry calculations and thermodynamic analysis demonstrated that certain nitrides are favorable for graphite nucleation. Some unique pictures showing graphite platelets growing out of the nucleus were obtained from deep-etched samples. They bring evidence of the disorientation of graphite platelets growing around the graphite nuclei for the particular case of Mg-Al-Si nitrides. It is suggested that the low crystallinity observed in the core of some graphite spheroids is the result of this random orientation of the graphite platelets growing on nucleating inclusions during early solidification and of subsequent curved-circumferential growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.J. Lalich and J.R. Hitchings, AFS Trans., 1976, vol 84, pp. 653-664

    Google Scholar 

  2. J. Tartera, N. Llorca-Isern, M. Marsal, M. Puig and M. Español, Int. J. Cast Metals Res., 1999, vol 11, pp. 459-464

    Article  Google Scholar 

  3. D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente and R. Suarez, Acta mater., 2017, vol 139, pp. 109-121

    Article  Google Scholar 

  4. J. Qing, V.L. Richards and D.C. Van Aken, Carbon, 2017, vol. 116, pp. 456-469

    Article  Google Scholar 

  5. J.P. Sadocha, J.E. Gruzleski, in: B. Lux, I. Minkoff, F. Mollard (Eds.), The Metallurgy of Cast Iron, Georgi Publishing Co., St Saphorin, Switzerland, 1975, pp. 443-459

    Google Scholar 

  6. D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez (2018) Int. J Metalcasting, 12(4), 722-752

    Article  Google Scholar 

  7. K. Yamane, H. Yasuda, A. Sugiyama, T. Nagira, M. Yoshiya, K. Morishita, K. Uesugi, A. Takeuchi, Y. Suzuki, Metall. Mater. Trans. A, 2015, vol 46A, pp. 4937-4946

    Article  Google Scholar 

  8. B. Tonn, J. Lacaze, S. Duwe, Materials Science Forum, 2018, vol 55, pp. 62-69

    Article  Google Scholar 

  9. T. Hara, T. Kitagawa, K. Kuroki, S. Saikawa, K. Terayama, S. Ikeno, K. Matsuda, Material Trans. JIMM, 2014, vol 55(9), pp. 1500-1505

    Article  Google Scholar 

  10. K. He, H.R. Daniels, A. Brown, R. Brydson and D.V. Edmonds, Acta Mater., 2007, vol 55, pp. 2919–2927

    Article  Google Scholar 

  11. L. Laffont, R. Jday, J. Lacaze, Metall. and Mat. Trans. A, 2018, vol 49A, pp. 1287-1294

    Article  Google Scholar 

  12. J.P. Monchoux, C. Verdu, G. Thollet, R. Fougères, A. Reynaud, Acta Mater., 2001, vol 49, pp. 4355-4362

    Article  Google Scholar 

  13. K. Theuwissen, J. Lacaze, L. Laffont, Carbon, 2016, vol 96, pp. 1120-11286

    Article  Google Scholar 

  14. J. Tartera, E. Ochoa de Zabalegui, M. Marsal, and G. Varela-Castro: Proceedings of The Carl Loper Cast Iron Symposium, The University of Wisconsin, Madison, May 27–29, 2009

  15. D.D. Li, R.X. Tan, J.X. Gao, B.Q. Wei, Z.Q. Fan, Q.Z. Huang, K.J. He, Carbon, 2017, vol 111, pp. 428-438

    Article  Google Scholar 

  16. G. Alonso, P. Larrañaga, D.M. Stefanescu, E. De la Fuente, A. Natxiondo, R. Suarez (2017) Int. J. Metalcasting, 11(1), 14-26

    Article  Google Scholar 

  17. G. Alonso, D.M. Stefanescu, P. Larrañaga, E. De la Fuente, R. Suarez, AFS Trans., 2017, vol 125, pp. 131-146

    Google Scholar 

  18. D.M. Stefanescu, G. Alonso, P. Larrañaga, R. Suarez, Acta mater., 2016, vol 103, pp. 103-114

    Article  Google Scholar 

  19. C.X. Sun, C.R. Loper, AFS Trans., 1983, vol 91, pp. 639-646

    Google Scholar 

  20. M.H. Jacobs. T.J. Law, D.A. Melford, M. J. Stowell (1974) Metals Technology, 11, 490-500

    Article  Google Scholar 

  21. Y. Igarashi, S. Okada (1998) Int. J. Cast Metals Res., 11(2), 83-88

    Article  Google Scholar 

  22. J.K. Solberg, M.I. Onsøien (2001) Mat. Sci. and Tech., 17(10), 1238-1242

    Article  Google Scholar 

  23. H. Nakae, Y. Igarashi, Materials Trans., 2002, vol 43(11), pp. 2826-2828

    Article  Google Scholar 

  24. G. Alonso, D.M. Stefanescu, E. De la Fuente, P. Larrañaga, R. Suarez, Mater. Sci. Forum, 2018, vol 925, pp. 78-85

    Article  Google Scholar 

  25. T. Skaland, Ø. Grong, T. Grong (1993) Metall. Trans., 24A, 2321-2345

    Article  Google Scholar 

  26. B.L. Bramfitt, Metall. Trans., 1970, vol 1, pp. 1987-1995

    Article  Google Scholar 

  27. J.A. Reynolds, C.R. Tottle, J. Inst. Metals, 1951, vol. 80, p. 1328

    Google Scholar 

  28. O. Kubachewski and E.L. Evans, Metallurgical Thermochemistry, London, Butterworth-Springer LTD, 1951

    Google Scholar 

  29. D.E. Partin, D.J. Williams, M. O’Keeffe, J. Solid State Chemistry, 1997, vol 132, pp. 56—59

    Article  Google Scholar 

  30. B. Lux (1968) In: H.D. Merchant (ed.) Recent Research in Cast Iron. Gordon and Breach Publsh., New York

    Google Scholar 

  31. E. Ruiz, S. Alvarez, P. Alemany (1994) Phys. Review B, 49(11), 7115-7123

    Article  Google Scholar 

  32. S. Amini, R. Abbaschian, Carbon, 2013, vol 51, pp. 110-123

    Article  Google Scholar 

  33. E. Ghassemali, J.C. Hernando, D.M. Stefanescu, A. Dioszegi, A.E.W. Jarfors, J. Dluhoš, M. Petrenec, Scripta Mat., 2019, vol 161, pp. 66–69

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Diputación Foral de Bizkaia, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Stefanescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 2, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanescu, D.M., Crisan, A., Alonso, G. et al. Growth of Spheroidal Graphite on Nitride Nuclei: Disregistry and Crystallinity During Early Growth. Metall Mater Trans A 50, 1763–1772 (2019). https://doi.org/10.1007/s11661-019-05125-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05125-z

Navigation