Skip to main content
Log in

Development of Accident-Tolerant FeCrAl Steels Containing Al2O3 Particles by Means of Internal Al Oxidation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

FeCrAl ferritic steels containing dispersed Al2O3 particles instead of Y2O3 or Ce2O3 particles were developed for accident-tolerant fuel cladding in light-water reactors. Forcible addition of only oxygen through mechanical alloying can create Al2O3 particles by precipitation during annealing above 973 K. The oxygen content was controlled to use oxidation of internal aluminum to form Al2O3 particles and increase the number density of Al2O3 particles with an average diameter of around 40 nm. The size and number density of Al2O3 particles are significantly affected by lattice misfit, and thus interfacial energy between Al2O3 particles and the matrix, and by aluminum solubility into the ferrite matrix. The estimated Al2O3 particle strengthening stress is consistent with measured tensile stress at 973 K. Both stresses are slightly improved with increasing oxygen content, but are half the level of that in steel strengthened by Ce2O3 and CeAlO3 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Terrani, J. Nucl. Mater., 2014, vol. 448, pp. 420-435.

    Article  Google Scholar 

  2. J.J. Powers, N.M. George, G.I. Maldonado, and A. Worrall: Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs, ORNL/TM-2015/415, Oak Ridge National Laboratory, 2015.

  3. A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ohnuki, T. Fujisawa, and T.F. Abe, J Nucl. Mater., 2011, vol. 417, pp.176-179.

    Article  Google Scholar 

  4. Y. Yano, T. Tanno, H. Oka, S. Ohtsuka, T. Inoue, S. Kato, T. Furukawa, T. Uwaba, T. Kaito, S. Ukai, N. Oono, A. Kimura, S. Hayashi, and T. Torimaru, J Nucl. Mater., 2017, vol. 487, pp. 229-237.

    Article  Google Scholar 

  5. Y. Shizukawa, S. Ukai, N. Oono, S. Hayashi, S. Ohtsuka, T. Torimaru, and A. Kimura, Proc. on Advanced High-Temperature Materials Technology for Sustainable and Reliable Power Engineering (1213HiMST-2015) 29 June-3 July (2015) Sapporo, Japan.

  6. S. Ukai, N. Oono, T. Kaito, T. Torimaru, A. Kimura, and S. Hayashi, in: The Ninth Pacific Rim International Conference on advanced Materials and Processing (PRICM9), The Japan Institute of Metals and Materials, 2016.

  7. S. Ukai, N. Oono, K. Sakamoto, T. Tirimaru, T. Kaito, A. Kimura, and S. Hayashi, in Proc. of ICAPP 2017, Fukui and Kyoto (Japan), April 24–28 (2017).

  8. H. Shibata, S. Ukai, N.H. Oono, K. Sakamoto, and M. Hirai, Jour. Nucl. Mater., 2018, vol. 502, pp. 228-235.

    Article  Google Scholar 

  9. K. Shobu, Calphad, 2009, Vol. 33, pp. 279-287.

    Article  Google Scholar 

  10. J. Ribis, and Y. de Carlan, Acta Materialia, 2012, vol. 60, pp. 238-252.

    Article  Google Scholar 

  11. L. Ragnaesson, D. Sichen (2010) Process Metall. 1(1):40-47.

    Google Scholar 

  12. J. Ribis et al., Journal of nuclear Materials, 2013, vol. 442, pp. S101-S105

    Article  Google Scholar 

  13. GR Odette (2018) Scripta Mater. 143:142-48.

    Article  Google Scholar 

  14. L. Barnard et al., Acta Materialia, 2015, vol. 91, pp. 340-354.

    Article  Google Scholar 

  15. C. Kenel et al., Intermetallics, 2017, vol. 90, pp. 63-73.

    Article  Google Scholar 

  16. Sawada H., Mater Res Bull, 1994, vol. 29, pp. 127–133.

    Article  Google Scholar 

  17. T. Ohashi, T. Hiromoto, H. Fujii, Y. Nuri, and K. Asanno, Tetsu-to-Hagane, 1976, No. 6.

  18. B.L. Bramfitt, 1970, Metall. Trans. 1(1):1987-1995.

    Article  Google Scholar 

  19. NIMS AtomWork Database: Y.S. Kim, Acta Cryst, 1968, pp. 295–29.

  20. Naoko Oono, Q.X. Tang, and Shigeharu Ukai, Materials Science & Engineering A, 2016, vol. 649, pp. 250-253.

    Article  Google Scholar 

  21. M. Palm (2009) Int. J. Mater. Res. 100 (3):277-287.

    Article  Google Scholar 

  22. Y.C. Chuang, C.H. Wu, and Z.B. Shao, Journal of the Less Common Metals, 1987, vol. 136, pp.147-153.

    Article  Google Scholar 

  23. R.O. Scattergood, and D.J. Bacon, Philosophical Magazine A, 1975, vol. 31, pp.179-198.

    Article  Google Scholar 

  24. S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, and H. Nakashima, J. Nucl. Sci. Technol., 2002, vol. 39, pp. 872-879.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Grant-in-Aid for Scientific Research (B), 16H04529, Japan Society for the Promotion of Science (JSPS). The authors would like to thank the laboratory of Nano-Micro Material-Analysis in Hokkaido University for the utilizing of XRD, FIB and TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Shibata.

Additional information

Manuscript submitted July 16, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, H., Ukai, S., Oono, N.H. et al. Development of Accident-Tolerant FeCrAl Steels Containing Al2O3 Particles by Means of Internal Al Oxidation. Metall Mater Trans A 50, 1816–1824 (2019). https://doi.org/10.1007/s11661-019-05122-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05122-2

Navigation