Skip to main content
Log in

Evolution and Growth Kinetics of θ Precipitates in Naturally Aged MgLiAlZn Alloy Studied by In Situ Small-Angle X-ray Scattering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The MgLiAlZn (LAZ1110) magnesium alloy was studied by in situ small-angle X-ray scattering (SAXS) to reveal the evolution of MgLi2Al θ precipitates (ppts) in the early aging stage at room temperature (RT). DSC and XRD measurements reveal θ ppts in naturally aged alloy. During 0 to 22 hours of early aging at RT, the growth and coarsening of plate-like θ nano-ppts are quantitatively resolved using SAXS in terms of the temporal evolution of the radius, thickness, and relative volume fraction. In this early aging period, the radius of θ ppts grows gradually from 3.1 to 6.9 nm with a nearly constant thickness of 3.7 nm. The relative volume fraction of θ ppts increases rapidly in the early aging stage and then more slowly in the peak aging stage at ~ 17 hours. The growth behavior of θ ppts after the peak aging stage follows the coarsening kinetics and causes hardness softening. It is supposed that the corresponding increase and decrease in hardness can be attributed to the coherency strengthening and coherency loss of the θ ppts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. 1. Y. Kojima: Mater. Trans., 2001, vol. 42, pp. 1154-1159.

    Article  Google Scholar 

  2. 2. Y. Kojima, S. Kamado: Mater. Sci. Forum, 2005, vol. 488-489, pp. 9-16.

    Article  Google Scholar 

  3. 3. H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, M. Niemeyer: Mater. Trans., 2001, vol. 42, pp. 1160-1166.

    Article  Google Scholar 

  4. 4. K. Higashi, J. Wolfenstine: Mater. Lett., 1991, vol. 10, pp. 329-332.

    Article  Google Scholar 

  5. 5. M. Kawasaki, K. Kubota, K.I. Higashi, T.G. Langdon: Mat. Sci. Eng. A, 2006, vol. 429, pp. 334-340.

    Article  Google Scholar 

  6. 6. P. Metenier, G. Gonzalezdoncel, O.A. Ruano, J. Wolfenstine, O.D. Sherby: Mat. Sci. Eng. A, 1990, vol. 125, pp. 195-202.

    Article  Google Scholar 

  7. ASM Handbook: Alloy Phase Diagrams, ASM International, Ohio, 1992, vol. 3, pp. 2–276.

  8. 8. F.H. Herbstein, B.L. Averbach: Acta Metall. Mater., 1956, vol. 4, pp. 407-413.

    Article  Google Scholar 

  9. 9. C.T. Chiang, S. Lee, C.L. Chu: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1374-1379.

    Article  Google Scholar 

  10. 10. Z.X. Kang, K. Lin, J.Y. Zhang: Mater. Sci. Tech., 2016, vol. 32, pp. 498-506.

    Article  Google Scholar 

  11. 11. X.R. Meng, R.Z. Wu, M.L. Zhang, L.B. Wu, C.L. Cui: J. Alloys Compd., 2009, vol. 486, pp. 722-725.

    Article  Google Scholar 

  12. G. Sheng, M. Staiger, M. Kral: Magnesium Technology, TMS, 2003, pp. 77–79.

  13. 13. G.S. Song, M. Staiger, M. Kral: Mat. Sci. Eng. A, 2004, vol. 371, pp. 371-376.

    Article  Google Scholar 

  14. 14. H.Y. Wu, Z.W. Gao, J.Y. Lin, C.H. Chiu: J. Alloys Compd., 2009, vol. 474, pp. 158-163.

    Article  Google Scholar 

  15. 15. L.B. Wu, C.L. Cui, R.Z. Wu, J.Q. Li, H.B. Zhan, M.L. Zhang: Mat. Sci. Eng. A, 2011, vol. 528, pp. 2174-2179.

    Article  Google Scholar 

  16. 16. A. Alamo, A.D. Banchik: J. Mater. Sci., 1980, vol. 15, pp. 222-229.

    Article  Google Scholar 

  17. 17. J.Y. Wang, J. Alloys Compd., 2009, vol. 485, pp. 241-244.

    Article  Google Scholar 

  18. 18. C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, Y.X. Qiao, E.H. Han: Sci. Rep., 2017, vol. 7, 40078.

    Article  Google Scholar 

  19. 19. Z.K. Qu, R.Z. Wu, H.B. Zhan, M.L. Zhang: J. Alloys Compd., 2012, vol. 536, pp. 145-149.

    Article  Google Scholar 

  20. 20. H.Y. Wu, J.Y. Lin, Z.W. Gao, H.W. Chen: Mat. Sci. Eng. A, 2009, vol. 523, pp. 7-12.

    Article  Google Scholar 

  21. 21. C.C. Hsu, J.Y. Wang, S. Lee: Mater. Trans., 2008, vol. 49, pp. 2728-2731.

    Article  Google Scholar 

  22. 22. J.C. McDonald: ASM Trans., 1968, vol. 61, pp. 505.

    Google Scholar 

  23. 23. C.J. Ma, D. Zhang, J.N. Qin: Trans. Nonferrous Met. Soc. China, 1999, vol. 9, pp. 772-777.

    Google Scholar 

  24. 24. Z. Drozd, Z. Trojanova, S. Kudela: J. Alloys Compd., 2004, vol. 378, pp. 192-195.

    Article  Google Scholar 

  25. 25. P. Crawford, R. Barrosa, J. Mendez, J. Foyos, O.S. EsSaid: J. Mater. Process. Tech., 1996, vol. 56, pp. 108-118.

    Article  Google Scholar 

  26. 26.A. Yamamoto, T. Ashida, Y. Kouta, K.B. Kim, S. Fukumoto, H. Tsubakino: Mater. Trans., 2003, vol. 44, pp. 619-624.

    Article  Google Scholar 

  27. 27. X.Y. Guo, R.Z. Wu, J.H. Zhang, B. Liu, M.L. Zhang: Mater. Design, 2014, vol. 53, pp. 528-533.

    Article  Google Scholar 

  28. 28. H.Y. Lin, R.Z. Wu, P.F. Fei, Z. Leng, X.Y. Guo, J.H. Zhang, B. Liu, M.L. Zhang: Kovove Mater., 2014, vol. 52, pp. 47-55.

    Google Scholar 

  29. 29. R.Z. Wu, X.Y. Guo, D.Y. Li: J. Alloys Compd., 2014, vol. 616, pp. 408-412.

    Article  Google Scholar 

  30. 30. G.S. Song, M.V. Kral: Mater. Charact., 2005, vol. 54, pp. 279-286.

    Article  Google Scholar 

  31. 31. R.Z. Wu, M.L. Zhang: Mat. Sci. Eng. A, 2009, vol. 520, pp. 36-39.

    Article  Google Scholar 

  32. 32. T. Liu, S.D. Wu, S.X. Li, P.J. Li: Mat. Sci. Eng. A, 2007, vol. 460, pp. 499-503.

    Article  Google Scholar 

  33. 33. Z.J. Li, X.Y. Jing, Y. Yuan, M.L. Zhang: Corros. Sci., 2012, vol. 63, pp. 358-366.

    Article  Google Scholar 

  34. 34. L.L. Shi, Y.J. Xu, K. Li, Z.P. Yao, S.Q. Wu: Curr. Appl. Phys., 2010, vol. 10, pp. 719-723.

    Article  Google Scholar 

  35. 35. H. Zhang, G.C. Yao, S.L. Wang, Y.H. Liu, H.J. Luo: Surf. Coat. Tech., 2008, vol. 202, pp. 1825-1830.

    Article  Google Scholar 

  36. 36. S.K. Wu, Y.H. Li, K.T. Chien, C. Chien, C.S. Yang: J. Alloys Compd., 2013, vol. 563, pp. 234-241.

    Article  Google Scholar 

  37. 37. C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch: Acta Mater., 2003, vol. 51, pp. 5335-5348.

    Article  Google Scholar 

  38. 38. R. Ferragut, F. Moia, F. Fiori, D. Lussana, G. Riontino: J. Alloys Compd., 2010, vol. 495, pp. 408-411.

    Article  Google Scholar 

  39. 39. G. Barucca, R. Ferragut, F. Fiori, D. Lussana, P. Mengucci, F. Moia, G. Riontino: Acta Mater., 2011, vol. 59, pp. 4151-4158.

    Article  Google Scholar 

  40. 40. W. Liu, W.L. Johnson, S. Schneider, U. Geyer, P. Thiyagarajan: Phys. Rev. B, 1999, vol. 59, pp. 11755-11759.

    Article  Google Scholar 

  41. 41. B. Rashkova, W. Prantl, R. Goergl, J. Keckes, S. Cohen, M. Bamberger, G. Dehm: Mat. Sci. Eng. A, 2008, vol. 494, pp. 158-165.

    Article  Google Scholar 

  42. 42. A. Deschamps, M. Garcia, J. Chevy, B. Davo, F. De Geuser: Acta Mater., 2017, vol. 122, pp. 32-46.

    Article  Google Scholar 

  43. 43. A. Deschamps, L. Lae, P. Guyot: Acta Mater., 2007, vol. 55, pp. 2775-2783.

    Article  Google Scholar 

  44. 44. E. Gumbmann, F. De Geuser, C. Sigli, A. Deschamps: Acta Mater., 2017, vol. 133, pp. 172-185.

    Article  Google Scholar 

  45. 45. F. De Geuser, F. Bley, A. Deschamps: J. Appl. Crystallogr., 2012, vol. 45, pp. 1208-1218.

    Article  Google Scholar 

  46. 46. P. Fratzl, F. Langmayr, O. Paris: J. Appl. Crystallogr., 1993, vol. 26, pp. 820-826.

    Article  Google Scholar 

  47. 47. A. Deschamps, F. De Geuser: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 77-86.

    Article  Google Scholar 

  48. O. Glatter, O. Kratky: Small Angle X-ray Scattering, Academic Press: New York, 1982, p. 222.

    Google Scholar 

  49. 49. C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies: Acta Mater., 2005, vol. 53, pp. 2447-2458.

    Article  Google Scholar 

  50. 50. Y.C. Huang, C.S. Tsao, S.K. Wu: Metals, 2018, vol. 8, p. 352.

    Article  Google Scholar 

  51. 51. C.S. Tsao, E.W. Huang, M.H. Wen, T.Y. Kuo, S.L. Jeng, U.S. Jeng, Y.S. Sun: J. Alloys Compd., 2013, vol. 579, pp. 138-146.

    Article  Google Scholar 

  52. 52. E.W. Huang, C.S. Tsao, M.H. Wen, T.Y. Kuo, S.Y. Tu, B.W. Wu, C.J. Su, U.S. Jeng: J. Mater. Res., 2014, vol. 29, pp. 874-879.

    Article  Google Scholar 

  53. 53. S.R. Kline: J. Appl. Crystallogr., 2006, vol. 39, pp. 895-900.

    Article  Google Scholar 

  54. 54. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-1112.

    Article  Google Scholar 

  55. 55. S. Esmaeili, D.J. Lloyd, W.J. Poole: Acta Mater., 2003, vol. 51, pp. 3467-3481.

    Article  Google Scholar 

  56. 56. W.A. Johnson, R.F. Mehl: T. Am. I. Min. Met. Eng., 1939, vol. 135, pp. 416-442.

    Google Scholar 

  57. 57. A. Kolmogoroff: Izv. Akad. Nauk SSSR Ser. Mat., 1937, vol. 1, pp. 355-359.

    Google Scholar 

  58. 58. R.E. Smallman, R.J. Bishop: Modern Physical Metallurgy and Materials Engineering: Chapter 8 - Strengthening and toughening, Butterworth-Heinemann, Oxford, 1999, pp. 259-296.

    Book  Google Scholar 

  59. M.N. Shetty: Dislocations and mechanical behaviour of materials: 4.12-Precipitation Hardening, PHI Learning Private Limited, Delhi, Indian, 2013, pp. 419–31.

  60. T.H. Courtney: Mechanical behavior of materials: 5.6 Particle Hardening, McGraw Hill, New York, USA, 2000, pp. 196–209.

  61. 61. H.H. J. Roesler, M. Baeker: Mechanical Behaviour of Engineering Materials, Springer-Verlag, Berlin/Heidelberg, Germany, 2007, pp. 165-225.

    Book  Google Scholar 

  62. 62. Z.L. Guo, W. Sha: Mater. Trans., 2002, vol. 43, pp. 1273-1282.

    Article  Google Scholar 

  63. 63. A. Vattre, B. Devincre, A. Roos: Intermetallics, 2009, vol. 17, pp. 988-994.

    Article  Google Scholar 

  64. 64. C.R. Barrett, W.D. Nix, A.S. Tetelman: The Principles of Engineering Materials, Prentice-Hall, New Jersey, USA, 1973, p. 263.

    Google Scholar 

  65. 65. J.W. Martin: Precipitation Hardening: 2 - The strength of aged alloy, Butterworth-Heinemann, Oxford, 1998, pp. 79-125.

    Book  Google Scholar 

  66. 66. T. Gladman: Mater. Sci. Tech. Ser., 1999, vol. 15, pp. 30-36.

    Article  Google Scholar 

  67. H.S. M.F. Ashby, D. Cebon: Materials: Engineering, Science, Processing and Design: 6. Beyond elasticity: plasticity, yielding and ductility, Butterworth-Heinemann, Oxford, 2018, p. 129.

  68. 68. M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura: Scripta Mater., 2005, vol. 53, pp. 799-803.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this study provided by the Ministry of Science and Technology (MOST), Taiwan, under Grant No. MOST 107-2221-E002-015-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Kaan Wu.

Additional information

Manuscript submitted October 29, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YC., Tsao, CS. & Wu, SK. Evolution and Growth Kinetics of θ Precipitates in Naturally Aged MgLiAlZn Alloy Studied by In Situ Small-Angle X-ray Scattering. Metall Mater Trans A 50, 1949–1956 (2019). https://doi.org/10.1007/s11661-019-05119-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05119-x

Navigation