Skip to main content
Log in

Effect of Zr Addition on Microstructure, Hardness and Oxidation Behavior of Arc-Melted and Spark Plasma Sintered Multiphase Mo-Si-B Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of 2 at. pct Zr addition at the expense of Mo on microstructural evolution, hardness as well as non-isothermal and isothermal oxidation behavior of arc-melted or spark-plasma sintered (SPS) 76Mo14Si10B and 79.5Mo12Si8.5B alloys, has been examined. The microstructures of both arc-melted and SPS alloys have exhibited α-Mo, Mo3Si and Mo5SiB2.These alloys, particularly those processed by SPS have also shown dispersion of SiO2 particles, and these are largely replaced by ZrO2 at interphase boundaries in the Zr-containing alloys. Alloying with Zr or processing by SPS has led to refinement of microstructure, which in turn has caused significant hardness enhancement. During heating from ambient temperature to 1250 °C in air inside a thermogravimetric analyzer, initial mass gain at ≈ 800 °C is found to be followed by rapid mass loss. Isothermal oxidation studies in the temperature range of 800 °C–1300 °C have shown initial mass loss caused by vaporization of MoO3 being followed by a regime of no change in mass. Besides B2O3-SiO2, MoO2 and Mo have been found in the oxide scales of all alloys, whereas ZrO2 and ZrSiO4 have been found along with Zr(MoO4)2 in case of Zr-containing alloys. Reduced mass loss is observed in Zr-containing alloys with the maximum improvement being observed for exposure at 800 °C, not only due to higher volume fractions of Mo3Si and Mo5SiB2 contributing to formation of B2O3-SiO2, but also because MoO3 is partly consumed to form non-volatile Zr(MoO4)2. Furthermore, refinement of microstructures obtained by Zr addition or processing by SPS increases the net area covered by interphase interfaces, which provides short circuit paths for diffusion and enhances the kinetics of formation of protective B2O3-SiO2 scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] M.K. Meyer, M.J. Kramer, and M. Akinc: Intermetallics, 1996, vol. 4, pp. 273–281.

    Article  Google Scholar 

  2. [2] J.H. Schneibel, M.J. Kramer, Ö. Ünal, and R.N. Wright: Intermetallics, 2001, vol. 9, pp. 25–31.

    Article  Google Scholar 

  3. [3] M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk: Intermetallics, 2002, vol. 10, pp. 225–232.

    Article  Google Scholar 

  4. [4] V. Supatarawanich, D.R. Johnson, and C.T. Liu: Intermetallics, 2004, vol. 12, pp. 721–725.

    Article  Google Scholar 

  5. [5] N. Sekido, R. Sakidja, and J.H. Perepezko: Intermetallics, 2007, vol. 15, pp. 1268–1276.

    Article  Google Scholar 

  6. [6] T. Karahana, G. Ouyang, P.K. Ray, M.J. Kramer, and M. Akinc: Intermetallics, 2017, vol. 87, pp. 38–44.

    Article  Google Scholar 

  7. [7] N.K. Kumar, B. Roy, R. Mitra, and J. Das: Intermetallics, 2017, vol. 88, pp. 28–30.

    Article  Google Scholar 

  8. [8] J. Das, B. Roy, N.K. Kumar, and R. Mitra: Intermetallics, 2017, vol. 83, pp. 101–109.

    Article  Google Scholar 

  9. [9] H. Long, S. Mao, Y. Liu, Z. Zhang, and X. Han: J. Alloys Compd., 2018, vol. 743, pp. 203–220.

    Article  Google Scholar 

  10. [10] A. Suzuki, H. Inui, and T.M. Pollock: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 345–368

    Article  Google Scholar 

  11. [11] M. Krüger, P. Jain, K.S. Kumar, and M. Heilmaier: Intermetallics, 2014, vol. 48 pp. 10–18.

    Article  Google Scholar 

  12. [12] B. Li, G.-j. Zhang, F. Jiang, S. Ren, G. Liu, and J. Sun: J. of Alloys and Comp., 2014, vol. 609, pp. 80–85.

    Article  Google Scholar 

  13. [13] C. Hochmuth, D. Schliephake, R. Völkl, M. Heilmaier, and U. Glatzel: Intermetallics, 2014, vol. 48, pp. 3–9.

    Article  Google Scholar 

  14. [14] P. Jain, and K.S. Kumar: Acta Mater., 2010, vol. 58, pp. 2124–2142;

    Article  Google Scholar 

  15. [15] P. Jain, and K.S. Kumar: Scr. Mater., 2010, vol. 62, pp. 1–4.

    Article  Google Scholar 

  16. [16] G. Zhang, W. He, B. Li, Y. Zha, and J. Sun: J. Alloys Compd., 2013, vol. 577, pp. 217–221.

    Article  Google Scholar 

  17. [17] J.H. Schneibel, M.J. Kramer, and D.S. Easton: Scr. Mater., 2002, vol. 46, pp. 217–221.

    Article  Google Scholar 

  18. [18] R. Mitra, A.K. Srivastava, N.E. Prasad, and S. Kumari: Intermetallics, 2006, vol. 14, pp. 1461–1471.

    Article  Google Scholar 

  19. [19] G. Hasemann, D. Kaplunenko, I. Bogomol, and M. Krüger: JOM, 2016, vol. 68 (11), pp. 2847–2853.

    Article  Google Scholar 

  20. [20] S. Paswan, R. Mitra, and S.K. Roy: Intermetallics, 2007, vol. 15, pp. 1217–1227.

    Article  Google Scholar 

  21. [21] S. Burk, B. Gorr, V.B. Trindade, and H.-J. Christ: Oxid. Met., 2010, vol. 73, pp. 163–181.

    Article  Google Scholar 

  22. [22] B. Gorr, L. Wang, S. Burk, M. Azim, S. Majumdar, H.-J. Christ, D. Mukherji, J. Rösler, D. Schliephake, and M. Heilmaier: Intermetallics, 2014, vol. 48, pp. 34–43.

    Article  Google Scholar 

  23. [23] T. Sossaman, R. Sakidja, and J.H. Perepezko: Scr. Mater., 2012, vol. 67, pp. 891–894.

    Article  Google Scholar 

  24. [24] T. Sossaman, and J.H. Perepezko: Corr. Sci., 2015, vol. 98, pp. 406–416.

    Article  Google Scholar 

  25. [25] M. Mousa, N. Wanderka, M. Timpel, S. Singh, M. Krüger, M. Heilmaier, and J. Banhart: Ultramicroscopy, 2011, vol. 111, pp. 706–710.

    Article  Google Scholar 

  26. [26] H. Saage, M. Krüger, D. Sturm, M. Heilmaier, J.H. Schneibel, E. George, L. Heatherly, Ch. Somsen, G. Eggeler, and Y. Yang: Acta Mater., 2009, vol. 57, pp. 3895–3901.

    Article  Google Scholar 

  27. [27] M. Krüger, D. Schliephake, P. Jain, K. S. Kumar, G. Schumacher, and M. Heilmaier: JOM, 2013, vol. 65 (2), pp. 301–306

    Article  Google Scholar 

  28. [28] J.H. Schneibel, R.O. Ritchie, J.J. Kruzic, and P.F. Tortorelli: Metal. Mater. Trans. A., 2005, vol. 36A, pp. 525–531.

    Article  Google Scholar 

  29. [29] J. Wang, B. Li, R. Li, T. Wang, X. Chen, and G. Zhang: Ceram. Inter., 2019, vol. 45, pp. 1182-1188.

    Google Scholar 

  30. [30] R. Mitra: Int. Mater. Rev., 2006, vol. 51, pp. 13–64.

    Article  Google Scholar 

  31. [31] V. Supatarawanich, D.R. Johnson, and C.T. Liu: Mater. Sci. Eng. A., 2003, vol. 344, pp. 328–339.

    Article  Google Scholar 

  32. [32] F. Wang, A. Shan, X. Dong, and J. Wu: Scr. Mater., 2007, vol. 56, pp. 737–740.

    Article  Google Scholar 

  33. [33] A.G. Evans, and E.A. Charles: J. Am. Ceram. Soc., 1976, vol. 59, pp. 371–372.

    Article  Google Scholar 

  34. [34] G.R.Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, J. Am. Ceram. Soc., 1981, vol. 64(9), pp. 533–538.

    Article  Google Scholar 

  35. K. Niihara, R. Morena, and D.P.H. Hasselman: J. Mater. Sci. Lett. 1982, vol. 1, pp. 13–16.

    Article  Google Scholar 

  36. C.A. Nunes, R. Sakidja, Z. Dong, and J.H. Perepezko: Intermetallics, 2000, vol. 8, pp. 327–337.

    Article  Google Scholar 

  37. [37] S.-H. Ha, K. Yoshimi, K. Maruyama, R. Tu, and T. Goto: Mater. Trans., 2010, vol. 51, pp. 1699–1704.

    Article  Google Scholar 

  38. [38] A. Misra, J. J. Petrovic and T. E. Mitchell: Scr. Mater., 1999, vol. 40, pp. 191–196.

    Article  Google Scholar 

  39. S. Paswan, R. Mitra, and S.K Roy: Metall. Mater. Trans. A., 2009, vol. 44, pp. 2644–58.

  40. N. Okamoto: J. Phase Equil. Diffus., 2011, vol. 32 (2), p. 176.

  41. P. Franke and D. Neuschütz: Scientific Group Thermodata Europe (SGTE): Mo-Zr (Molybdenum – Zirconium), Binary Systems. Part 5: Binary Systems Supplement 1. Landolt-Börnstein - Group IV Physical Chemistry (Numerical Data and Functional Relationships in Science and Technology), vol 19B5. Springer, Berlin, Heidelberg.

  42. [42] R.J. Pérez, and B. Sundman: Calphad, 2003, vol 27, pp. 253–262.

    Article  Google Scholar 

  43. A. Zavaliangos, J. Zhang, M. Krammer, and J.R Groza: Mater. Sci. Eng. A. 2004, vol. 379, pp. 218–28.

  44. [44] H. Tomino, H. Watanabe, and Y. Kondo: J. Jpn. Soc. Powder Powder Metall., 1997, vol. 44 pp. 974–979.

    Article  Google Scholar 

  45. [45] I. Tomaszkiewicz, G. A. Hope, C. M. Beck, and P.A.G. O’Hare: J. Chem. Thermodyn., 1996, vol. 28, pp. 29–42.

    Article  Google Scholar 

  46. [46] P.A.G. O’Hare: Pure Appl. Chem., 1999, Vol. 71, pp. 1243–1248.

    Article  Google Scholar 

  47. [47] Y.S. Pogozhev, A.Y. Potanin, E.A. Levashov, A.V. Novikov, T.A. Sviridova, and N. A. Kochetov: Russ. J. Non Ferrous Met., 2014, Vol. 55, pp. 632–638.

    Article  Google Scholar 

  48. [48] I. Barin: Thermochemical Data of Pure Substances, 3rd ed, VCH, Weinheim, Germany, 1989.

    Google Scholar 

  49. [49] B. Roy, J. Das, and R. Mitra: Corr. Sci., 2013, vol. 68, pp. 231–237.

    Article  Google Scholar 

  50. [50] F.A. Rioult, S.D. Imhoff, R. Sakidja, and J.H. Perepezko: Acta Mater., 2009, vol. 57, pp. 4600–4613.

    Article  Google Scholar 

  51. [51] Y. Kawamoto, K. Clemens, and M. Tomozawa: J. Am. Ceram. Soc., 1981, vol. 64 pp. 292–296.

    Article  Google Scholar 

  52. [52] M. Suzuki, S. Sodeoka, and T. Inoue: Mater. Trans. JIM, 2005, vol. 46, pp. 669–674.

    Article  Google Scholar 

  53. [53] Q. Zhang, H. Yang, F. Zeng, S. Wang, D.Tang, and T. Zhang: RSC Adv., 2015, vol. 5, pp. 41772–41779.

    Article  Google Scholar 

  54. [54] A. Quintas, D. Caurant, O. Majérus, P. Loiseau, T. Charpentier, and J.L. Dussossoy: J. Composite. Compd., 2017, vol. 714, pp. 47–62.

    Google Scholar 

  55. [55] K.H. Sun: J. Amer. Ceram. Soc., 1947, vol. 30, pp. 277–281.

    Article  Google Scholar 

  56. [56] D.A. McKeown, I.S. Muller, A.C. Buechele, I.L. Pegg, and C.A. Kendziora, J. Non-Cryst. Solids, 2000, vol. 262, pp. 126–134.

    Article  Google Scholar 

  57. [57] A.M. Huntz: Mater. Sci. Eng. A., 1987, vol. 87, pp. 251–260.

    Article  Google Scholar 

  58. [58] K. Yoshimi, S. Nakatani, S. Hanada, S.-H. Ko and Y.-H. Park: Sci. Technol. Adv. Mater., 2002, vol. 3(2), pp. 181-192.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Mithun Das, Mr. Nirmal Das, and Mr. Srikrishna Maity of the Central Research Facility, IIT Kharagpur for technical assistance. The financial support provided by DRDO (ERIP/ER/1200425/M/01/1482), New Delhi, Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mitra.

Additional information

Manuscript submitted 26 August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N.K., Das, J. & Mitra, R. Effect of Zr Addition on Microstructure, Hardness and Oxidation Behavior of Arc-Melted and Spark Plasma Sintered Multiphase Mo-Si-B Alloys. Metall Mater Trans A 50, 2041–2060 (2019). https://doi.org/10.1007/s11661-019-05111-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05111-5

Navigation