Scalable Ultrasound-Assisted Casting of Ultra-large 2219 Al Alloy Ingots

Abstract

A scalable ultrasound-assisted direct-chill casting technique was used to manufacture ultra-large 2219 Al alloy ingots (1250 mm in diameter; 2700 mm in net length). Following industrial ultrasonic casting experiments, three fundamental aspects of the resulting alloy were investigated: the microstructural refinement, the macro- and microsegregation mediation at different length scales, and the modification of eutectic skeletons and intermetallic compounds. This work presents new insights regarding the manufacture of ultra-large metallic ingots for special industrial applications.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    [1] G.I. Eskin: Ultrason. Sonochem., 2001, vol. 8, pp. 319-25.

    Article  Google Scholar 

  2. 2.

    [2] Y. Tian, Z.L. Liu, X.Q. Li, L.H. Zhang, R.Q. Li, R.P. Jiang, and F. Dong: Ultrason. Sonochem., 2018, vol. 43, pp. 29-37.

    Article  Google Scholar 

  3. 3.

    [3] R.Q. Li, Z.L. Liu, F. Dong, X.Q. Li, and P.H. Chen: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3790-6.

    Article  Google Scholar 

  4. 4.

    [4] G.I. Eskin: Z. Metallkd., 2002, vol. 93(6), pp. 502-7.

    Article  Google Scholar 

  5. 5.

    [5] T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2056-66.

    Article  Google Scholar 

  6. 6.

    [6] G.I. Eskin and D.G. Eskin: Ultrasonic treatment of light alloy melts, 2nd edition, CRC Press, Taylor & Francis Group, 2014.

    Google Scholar 

  7. 7.

    [7] O.V. Abramov: Ultrasonics, 1987, vol. 25(2), pp. 73-82.

    Article  Google Scholar 

  8. 8.

    M. Qian, A. Ramirez, and A. Das: J. Cryst. Growth., 2009, vol. 311 (4), pp. 3708–15.

  9. 9.

    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn: J. Cryst. Growth., 2014, vol. 408, pp. 119–24

  10. 10.

    [10] F. Wang, I. Tzanakis, D. Eskin, J. Mi, and T. Connolley: Ultrason. Sonochem., 2017, vol. 39, pp. 66-76.

    Article  Google Scholar 

  11. 11.

    [11] F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, and T. Connolley: Acta Mater., 2017, vol. 141, pp. 142-53.

    Article  Google Scholar 

  12. 12.

    [12] H. Huang, D. Shu, J. Zeng, F. Bian, Y. Fu, J. Wang, and B. Sun: Scripta Mater., 2015, vol. 106, pp. 21-5.

    Article  Google Scholar 

  13. 13.

    [13] D. Shu, B. Sun, J. Mi, and P.S. Grant: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3755-66.

    Article  Google Scholar 

  14. 14.

    [14] J.G. Jung, T.Y. Ahn, Y.H. Cho, S.H. Kim, and J.M. Lee: Acta Mater., 2018, vol. 144, pp. 31-40.

    Article  Google Scholar 

  15. 15.

    [15] F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay, and M. Mounib: Acta Mater., 2016, vol. 116, 354-63.

    Article  Google Scholar 

  16. 16.

    [16] R. Chen, D. Zheng, T. Ma, H. Ding, Y. Su, J. Guo, and H. Fu: Ultrason. Sonochem., 2017, vol. 38, pp. 120-33.

    Article  Google Scholar 

  17. 17.

    [17] X. Zhang, J. Kang, S. Wang, J. Ma, and T. Huang: Ultrason. Sonochem., 2015, vol. 27, pp. 307-15.

    Article  Google Scholar 

  18. 18.

    [18] X. Chen, F. Ning, J. Hou, Q. Le, and Y. Tang: Ultrason. Sonochem., 2018, vol. 40, pp. 433-41.

    Article  Google Scholar 

  19. 19.

    [19] X. Yang, S. Wu, S. L Lü, L. Hao, and X. Fang: Ultrason. Sonochem., 2018, vol. 40, pp. 472-9.

    Article  Google Scholar 

  20. 20.

    A. Ramirez, Ma Qian, B. Davis, T. Wilks, and D.H. StJohn: Scripta Mater., 2008, vol. 59, pp. 19–22.

  21. 21.

    [21] B. Nagasivamuni, G. Wang, D.H. StJohn, and M.S. Dargusch: J. Cryst. Growth., 2018, vol. 495, pp. 20-8.

    Article  Google Scholar 

  22. 22.

    R.Q. Li, Z.L. Liu, F. Dong, X.Q. Li, and P.H. Chen: Adv. Eng. Mater., 2017, vol. 19 (2), pp. 1600375.

  23. 23.

    [23] F. Dong, X.Q. Li, L.H. Zhang, L.Y. Ma, and R.Q. Li: Ultrason. Sonochem. 2016, vol. 31, pp. 150-6.

    Article  Google Scholar 

  24. 24.

    [24] D.G. Eskin, R. Nadella, and L. Katgerman: Acta Mater., 2008, vol. 56, pp. 1358-65.

    Article  Google Scholar 

  25. 25.

    [25] R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: Prog. Mater. Sci., 2008, vol. 53, pp. 421-80.

    Article  Google Scholar 

  26. 26.

    [26] D.G. Eskin, Q. Du, and L. Katgerman: Scripta Mater., 2006, vol. 55, pp. 715-8.

    Article  Google Scholar 

  27. 27.

    [27] W. Kurz and D.J. Fisher: Fundamentals of solidification, 4th edition., Trans. Tech. Publications, Switzerland, 1998.

    Google Scholar 

  28. 28.

    A. Chemin, D. Marques, L. Bisanha, A. deJ. Motheo, W.W.B. Filho, and C.O.F. Ruchert: Mater. Des., 2014, vol. 53, pp. 118–23.

  29. 29.

    [29] X.-M. Li and M.J. Starink: Mater. Sci. Technol., 2001, vol. 17(11), pp. 1324-8.

    Article  Google Scholar 

  30. 30.

    [30] L. Zhang, D.G. Eskin, and L. Katgerman; J. Mater. Sci., 2011, vol. 46, pp. 5252-9.

    Article  Google Scholar 

  31. 31.

    [31] T.V. Atamanenko, D.G. Eskin, M. Sluiter, and L. Katgerman: J. Alloys Compds., 2011, vol. 509, pp. 57-60.

    Article  Google Scholar 

  32. 32.

    [32] Y. Osawa, S. Takamori, T. Kimura, K. Minagawa, and H. Kakisawa: Mater. Trans., 2007, vol. 48(9), pp. 2467-75.

    Article  Google Scholar 

  33. 33.

    [33] A. Das and H.R. Kotadia: Mater. Chem. Phys., 2011, vol. 125, pp. 853-9.

    Article  Google Scholar 

  34. 34.

    [34] H.R. Kotadia and A. Das: J. Alloys Compd., 2015, vol. 620, pp. 1-4.

    Article  Google Scholar 

  35. 35.

    [35] D. G. Eskin, A. Jafari, and L. Katgerman: Mater. Sci. Technol., 2011, vol. 27(5), pp. 890-6.

    Article  Google Scholar 

  36. 36.

    [36] H. Combeau, M. Založnik, S. Hans, and P.E. Richy: Metall. Mater. Trans. B, 2009, vol. 40(3), pp. 289-304.

    Article  Google Scholar 

  37. 37.

    [37] A. Ludwig, M. Wu, and A. Kharicha: Metall. Mater. Trans. A, 2015, vol. 46(11), pp. 4854-67.

    Article  Google Scholar 

  38. 38.

    [38] F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater. 2013, vol. 61(1), pp. 360-70.

    Article  Google Scholar 

  39. 39.

    [39] R.P. Jiang, X.Q. Li, and M. Zhang: Met. Mater. Int., 2015, vol. 21(1), pp. 104-8.

    Article  Google Scholar 

Download references

This project is supported by National Natural Science Foundation of China (NSFC) through Grant No. 51605496, 51475480 and 51575539. X. Li acknowledges the funding support from National Natural Science Foundation of China (NSFC) with No. U1637601. R. Li thanks support from the State Key Laboratory of High Performance Complex Manufacturing through No. ZZYJKT2017-01. This research was also supported by Innovation Driven Program of Central South University (Grant No. 2019CX006). Experimental assistance obtained from all the MPhil/PhD students and technicians at Central South University who may leave or stay at professor Xiaoqian Li’s group is sincerely acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhilin Liu or Ruiqing Li.

Additional information

Manuscript submitted November 4, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, R., Jiang, R. et al. Scalable Ultrasound-Assisted Casting of Ultra-large 2219 Al Alloy Ingots. Metall and Mat Trans A 50, 1146–1152 (2019). https://doi.org/10.1007/s11661-018-5097-y

Download citation