Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1437–1447 | Cite as

The Role of Plastic Strain on the Delayed Fracture Behavior of Twinning-Induced Plasticity Steels

  • Z. C. Luo
  • R. D. Liu
  • X. Wang
  • H. W. Yen
  • M. X. HuangEmail author
Article
  • 174 Downloads

Abstract

The present work investigates delayed fracture (DF) behavior of a twinning-induced plasticity (TWIP) steel in a neutral environment using deep-drawn cup specimens. The specimens are exposed to different corrosive environment to observe the occurrence of DF. The results reveal that the DF of TWIP steel is caused by a hydrogen-assisted transgranular stress corrosion cracking mechanism. Besides the residual stress, we demonstrate that the plastic strain plays a crucial role on the DF of TWIP steel by accelerating the crack growth rate.

Notes

Acknowledgments

M.X. Huang acknowledges the financial support from the National Natural Science Foundation of China (No. U1764252, U1560204) and Research Grants Council of Hong Kong (No. 17255016, 17203014, C7025-16G). H.-W. Yen thanks for financial support under the contract 106-2628-E-002-015-MY3 from MOST in Taiwan.

References

  1. 1.
    C. Gurney and Z. Borysowski, Proceedings of the Physical Society 1948, vol. 61, pp. 446.CrossRefGoogle Scholar
  2. 2.
    N. J. Petch and P. Stables, Nature 1952, vol. 169, pp. 842-843.CrossRefGoogle Scholar
  3. 3.
    H. Uhlig, A. White and J. Lincoln, Acta Metallurgica 1957, vol. 5, pp. 473-475.CrossRefGoogle Scholar
  4. 4.
    Motomichi Koyama, Eiji Akiyama and Kaneaki Tsuzaki, Corrosion Science 2012, vol. 59, pp. 277-281.CrossRefGoogle Scholar
  5. 5.
    M. Koyama, E. Akiyama and K. Tsuzaki, Corrosion Science 2012, vol. 54, pp. 1-4.CrossRefGoogle Scholar
  6. 6.
    Il-Jeong Park, Seo Yeon Jo, Minwoo Kang, Sang-Min Lee and Young-Kook Lee, Corrosion Science 2014, vol. 89, pp. 38-45.CrossRefGoogle Scholar
  7. 7.
    T. Dieudonné, L. Marchetti, M. Wery, F. Miserque, M. Tabarant, J. Chêne, C. Allely, P. Cugy and C. P. Scott, Corrosion Science 2014, vol. 83, pp. 234-244.CrossRefGoogle Scholar
  8. 8.
    Xu Zhu, Wei Li, Hongshan Zhao, Li Wang and Xuejun Jin, International Journal of Hydrogen Energy 2014, vol. 39, pp. 13031-13040.CrossRefGoogle Scholar
  9. 9.
    Xu Zhu, Ke Zhang, Wei Li and Xuejun Jin, Materials Science and Engineering: A 2016, vol. 658, pp. 400-408.CrossRefGoogle Scholar
  10. 10.
    X. Zhu, W. Li, T.Y. Hsu, S. Zhou, L. Wang and X. Jin: Scripta Materialia, 2015, vol. 97, pp. 21–24.Google Scholar
  11. 11.
    Jeongho Han, Jae-Hoon Nam and Young-Kook Lee, Acta Materialia 2016, vol. 113, pp. 1-10.CrossRefGoogle Scholar
  12. 12.
    Y. Li, W. Li, J.C. Hu, H.M. Song and X.J. Jin, Int. J. Plasticity 2017, vol. 88, pp. 53-69.CrossRefGoogle Scholar
  13. 13.
    J. R. Buckley and D. Hardie, Corrosion Science 1993, vol. 34, pp. 93-107.CrossRefGoogle Scholar
  14. 14.
    Motomichi Koyama, Eiji Akiyama, Kaneaki Tsuzaki and Dierk Raabe, Acta Materialia 2013, vol. 61, pp. 4607-4618.CrossRefGoogle Scholar
  15. 15.
    T. Dieudonné, L. Marchetti, M. Wery, J. Chêne, C. Allely, P. Cugy and C. P. Scott, Corrosion Science 2014, vol. 82, pp. 218-226.CrossRefGoogle Scholar
  16. 16.
    J. Zhao, Z. Jiang and C.S. Lee, Corrosion Science 2014, vol. 82, pp. 380-91.CrossRefGoogle Scholar
  17. 17.
    Motomichi Koyama, Eiji Akiyama, Takahiro Sawaguchi, Dierk Raabe and Kaneaki Tsuzaki, Scripta Materialia 2012, vol. 66, pp. 459-462.CrossRefGoogle Scholar
  18. 18.
    J.H. Ryu, S.K. Kim, C.S. Lee, D.-W. Suh and H.K.D.H. Bhadeshia: Proc. R. Soc. A Math. Phys. Eng. Sci., 2013, vol. 469, 20120458.Google Scholar
  19. 19.
    S. Hong, S.Y. Shin, H.S. Kim, S. Lee, S.-K. Kim, K.-G. Chin and N.J. Kim: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, vol. 44A, pp. 776–86.Google Scholar
  20. 20.
    Seokmin Hong, Junghoon Lee, Byeong-Joo Lee, Hyoung Seop Kim, Sung-Kyu Kim, Kwang-Geun Chin and Sunghak Lee, Materials Science and Engineering: A 2013, vol. 587, pp. 85-99.CrossRefGoogle Scholar
  21. 21.
    S. Hong, S.Y. Shin, H.S. Kim, S. Lee, S.-K. Kim, K.-G. Chin and N.J. Kim: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2012, vol. 43A, pp. 1870–83.Google Scholar
  22. 22.
    Seokmin Hong, Junghoon Lee, Sunghak Lee, Wanchuck Woo, Sung-Kyu Kim and Hyoung Seop Kim, Metallurgical and Materials Transactions A 2014, vol. 45, pp. 1953-1961.CrossRefGoogle Scholar
  23. 23.
    R. T. van Tol, L. Zhao, H. Schut and J. Sietsma, Metallurgical and Materials Transactions A 2012, vol. 43, pp. 3070-3077.CrossRefGoogle Scholar
  24. 24.
    S. Ortega, S. Papula, T. Saukkonen, J. Talonen and H. Hänninen: Fatigue Fract. Eng. Mater. Struct., 2014, vol. 38(1), pp. 1–11.Google Scholar
  25. 25.
    J.G. Kim, J.I. Yoon, S.M. Baek, M.H. Seo, W.T. Cho, K.-G. Chin, S. Lee and H.S. Kim: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2692–96.Google Scholar
  26. 26.
    O. Muránsky, C. J. Hamelin, M. C. Smith, P. J. Bendeich and L. Edwards, Comput. Mater. Sci. 2012, vol. 54, pp. 125-134.CrossRefGoogle Scholar
  27. 27.
    B. K. Chun, H. Y. Kim and J. K. Lee, International Journal of Plasticity 2002, vol. 18, pp. 597-616.CrossRefGoogle Scholar
  28. 28.
    K. Chung, K. Ahn, D. H. Yoo, K. H. Chung, M. H. Seo and S. H. Park, International Journal of Plasticity 2011, vol. 27, pp. 52-81.CrossRefGoogle Scholar
  29. 29.
    O. Bouaziz, S. Allain and C. Scott, Scripta Materialia 2008, vol. 58, pp. 484-487.CrossRefGoogle Scholar
  30. 30.
    B. K. Chun, J. T. Jinn and J. K. Lee, International Journal of Plasticity 2002, vol. 18, pp. 571-595.CrossRefGoogle Scholar
  31. 31.
    K. Piao, J. K. Lee, J. H. Kim, H. Y. Kim, K. Chung, F. Barlat and R. H. Wagoner, International Journal of Plasticity 2012, vol. 38, pp. 27-46.CrossRefGoogle Scholar
  32. 32.
    K. G. Chin, C. Y. Kang, S. Y. Shin, S. Hong, S. Lee, H. S. Kim, K. H. Kim and N. J. Kim, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2011, vol. 528, pp. 2922-2928.CrossRefGoogle Scholar
  33. 33.
    Thorsten Michler, Joerg Naumann, Martin Hock, Karl Berreth, Michael P. Balogh and Erich Sattler, Materials Science and Engineering: A 2015, vol. 628, pp. 252-261.CrossRefGoogle Scholar
  34. 34.
    Z. C. Luo and M. X. Huang, Scripta Materialia 2018, vol. 142, pp. 28-31.CrossRefGoogle Scholar
  35. 35.
    Marko Vrh, Miroslav Halilovič, Bojan Starman and Boris Štok, International Journal of Material Forming 2009, vol. 2, p. 825.CrossRefGoogle Scholar
  36. 36.
    S. Bouvier, H. Haddadi, P. Levée and C. Teodosiu, Journal of Materials Processing Technology 2006, vol. 172, pp. 96-103.CrossRefGoogle Scholar
  37. 37.
    S. Klein, M. Staring, K. Murphy, M. A. Viergever and J. P. Pluim, IEEE transactions on medical imaging 2010, vol. 29, pp. 196-205.CrossRefGoogle Scholar
  38. 38.
    T. J. Carter and L. A. Cornish, Engineering Failure Analysis 2001, vol. 8, pp. 113-121.CrossRefGoogle Scholar
  39. 39.
    Richard A Oriani, Acta metallurgica 1970, vol. 18, pp. 147-157.CrossRefGoogle Scholar
  40. 40.
    K. Ahn, D. Yoo, M. H. Seo, S. H. Park and K. Chung, Met. Mater.-Int. 2009, vol. 15, pp. 637-647.CrossRefGoogle Scholar
  41. 41.
    I. Gutierrez-Urrutia, J. A. del Valle, S. Zaefferer and D. Raabe, Journal of Materials Science 2010, vol. 45, pp. 6604-6610.CrossRefGoogle Scholar
  42. 42.
    Z. Szklarskasmialowska and J. Mankowski, Corrosion Science 1978, vol. 18, pp. 953-960.CrossRefGoogle Scholar
  43. 43.
    Eiji Akiyama, Katsuhiro Matsukado, Maoqiu Wang and Kaneaki Tsuzaki, Corrosion Science 2010, vol. 52, pp. 2758-2765.CrossRefGoogle Scholar
  44. 44.
    Songjie Li, Eiji Akiyama, Nobuyoshi Uno, Keiji Hirai, Kaneaki Tsuzaki and Boping Zhang, Corrosion Science 2010, vol. 52, pp. 3198-3204.CrossRefGoogle Scholar
  45. 45.
    Tooru Tsuru, Yanliang Huang, Md Rostom Ali and Atsushi Nishikata, Corrosion Science 2005, vol. 47, pp. 2431-2440.CrossRefGoogle Scholar
  46. 46.
    G. Lu, Q. Zhang, N. Kioussis and E. Kaxiras, Physical review letters 2001, vol. 87, p. 095501.CrossRefGoogle Scholar
  47. 47.
    Jeffrey Venezuela, Qinglong Liu, Mingxing Zhang, Qingjun Zhou and Andrej Atrens, Corrosion Science 2015, vol. 99, pp. 98-117.CrossRefGoogle Scholar
  48. 48.
    SP Lynch, Acta Metallurgica 1988, vol. 36, pp. 2639-2661.CrossRefGoogle Scholar
  49. 49.
    J.H. Ryu: Pohang: Pohang University of Science and Technology, 2012.Google Scholar
  50. 50.
    S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal and S.K. Baveja: Mater. Des., 2011, vol. 32, pp. 3823–31.Google Scholar
  51. 51.
    M. Seita, J. P. Hanson, S. Gradecak and M. J. Demkowicz, Nature communications 2015, vol. 6, p. 6164.CrossRefGoogle Scholar
  52. 52.
    R.K.S. Raman, M. Khalissi and S. Khoddam: Scripta Mater., 2012, vol. 67, pp. 943–46.Google Scholar
  53. 53.
    Hideo Niwa, Satoru Asawa, Shiro Haruyama and T. Mori, Corrosion Science 1983, vol. 23, pp. 959-968.CrossRefGoogle Scholar
  54. 54.
    Yuhang Hou, Yunping Li, Chen Zhang, Yuichiro Koizumi and Akihiko Chiba, Corrosion science 2014, vol. 89, pp. 258-267.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Z. C. Luo
    • 1
    • 2
  • R. D. Liu
    • 3
  • X. Wang
    • 3
  • H. W. Yen
    • 4
  • M. X. Huang
    • 1
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong Kong, China
  2. 2.Shenzhen Institute of Research and InnovationThe University of Hong KongShenzhenChina
  3. 3.Iron and Steel Research InstituteAnsteel GroupAnshanChina
  4. 4.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations