Skip to main content

Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel

Abstract

The present work discusses the comparative corrosion behavior of five microstructures of steels, namely, pearlite, bainite, spheroidized, martensite, and tempered martensite, which have been processed, respectively, by air cooling, isothermal transformation, spheroidizing, quenching, and tempering of a steel with composition 0.70C, 0.24Si, 1.12Mn, 0.026P, 0.021S, 0.013Nb, 0.0725Ta, and 97.7Fe (all are in wt pct). Dynamic polarization and alternating current (AC) impedance spectroscopic tests in freely aerated 3.5 pct NaCl solution show that the corrosion resistance of the steel specimens consisting of the preceding five microstructures decreases in the following sequence: pearlitic – bainitic – spheroidized – martensitic – tempered martensitic steels. The variation in the corrosion rate has been attributed to the shape, size, and distribution of the ferrite and cementite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. Mars G. Fontana: Corrosion Engineering, McGraw-Hill, New York, NY, 1987.

    Google Scholar 

  2. R. Balasubramaniam, B. Panda, G. Dwivedi, A.P. Moon, S. Mahapatra, and A.K. Manuwal: Curr. Sci., 2011, vol. 100, pp. 52–57.

    Google Scholar 

  3. B. Panda and R. Balasubramaniam: Mater. Sci. Technol., 2009, vol. 25, pp. 1375–82.

    Article  Google Scholar 

  4. A.P. Moon, S. Sangal, S. Layek, S. Giribaskar, and K. Mondal: Metall. Mater. Trans. A, 2015, vol. 46A, pp.1500–18.

    Article  Google Scholar 

  5. A. Moon, S. Sangal, and K. Mondal: Trans. Ind. Inst. Met., 2013, vol. 66, pp. 33–41.

    Article  Google Scholar 

  6. G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1961–74.

    Article  Google Scholar 

  7. A.P. Moon, S. Sangal, S. Srivastav, N.S. Gajbhiye, and K. Mondal: J. Mater. Eng. Perform., 2015, vol. 24, pp. 85–97.

    Article  Google Scholar 

  8. E.C. De Souza, S.M. Rossitti, C.A. Fortulan, J.M. Domingos, and D.A. Rollo: Mater. Res., 2016, vol. 20, pp. 21–29.

    Article  Google Scholar 

  9. P. Sadler, N.C. Pruitt, T.S. Sudarshan, and M.R. Louthan: J. Mater. Eng., 1987, vol. 91, pp. 51–156.

    Google Scholar 

  10. S.C. Ikpeseni: Int. J. Eng. Sci. Invent., 2017, vol. 6, pp. 60–65.

    Article  Google Scholar 

  11. V.C. Igwemezie and J.E.O. Ovri: Int. J. Eng. Sci., 2013, vol. 2, pp. 2319–1805.

    Google Scholar 

  12. S.H. Atapek, S. Polat, and S. Zor: Prot. Met. Phys. Chem. Surf., 2013, vol. 49, pp. 240–46.

    Article  Google Scholar 

  13. O. Kazum, M.B. Kannan, H. Beladi, I.B. Timokhina, P.D. Hodgson, and S. Khoddam: Mater. Des., 2014, vol. 54, pp. 67–71.

    Article  Google Scholar 

  14. D.A. López, W.H. Schreiner, S.R.R. de Sánchez, and S.N. Simison: Appl. Surf. Sci., 2003, vol. 207, pp. 69–85.

    Article  Google Scholar 

  15. D.A. López, S.N. Simison, and S.R. De Sánchez: Electrochim Acta, 2003, vol. 48, pp. 845–54.

    Article  Google Scholar 

  16. H.J. Cleary and N.D. Greene: Corros. Sci., 1967, vol. 7, pp. 821–31.

    Article  Google Scholar 

  17. D. Clover, B. Kinsella, B. Pejcic, and R. De Marco: J. Appl. Electrochem., 2005, vol. 35, pp. 139–49.

    Article  Google Scholar 

  18. W. Callister and D. Rethwisch: Materials Science and Engineering: An Introduction, John Wiley & Sons, New York, NY, 2007.

    Google Scholar 

  19. T. Arai: Heat Treating, ASM Handbook, ASM International, 2001.

    Google Scholar 

  20. J. Guo, S. Yang, C. Shang, Y. Wang, and X. He: Corros. Sci., 2008, vol. 51, pp. 242–51.

    Article  Google Scholar 

  21. V. Rault, V. Vignal, H. Krawiec, and O. Tadjoa: Corros. Sci., 2014, vol. 86, pp. 275–84.

    Article  Google Scholar 

  22. S.I. Al-rubaiey, E.A. Anoon, and M.M. Hanoon: Eng. Technol. J., 2013, vol. 31, pp. 1–12.

    Google Scholar 

  23. M. Ferhat, A. Benchettara, S.E. Amara, and D. Najjar: J. Mater. Environ. Sci., 2014, vol. 5, pp. 1059–68.

    Google Scholar 

  24. X. Hao, J. Dong, I.I.N. Etim, J. Wei, and W. Ke: Corros. Sci., 2016, vol. 110, pp. 296–304.

    Article  Google Scholar 

  25. D.O. Oluyemi, O.I. Oluwole, and B.O. Adewuyi: Mater. Res., 2011, vol. 14, pp. 135–41.

    Article  Google Scholar 

  26. D.N. Staicopolus: J. Electrochem. Soc., 1963, vol. 110, p. 1121.

    Article  Google Scholar 

  27. J.B. Sun, G.A. Zhang, W. Liu, and M.X. Lu: Corros. Sci., 2012, vol. 57, pp. 131–38.

    Article  Google Scholar 

  28. H. Bhadeshia: Materials Algorithm Project Program Library, Phase Transformation Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, United Kingdom, https://www.phase-trans.msm.cam.ac.uk/map/steel/programs/mucg46-b.html.

  29. W.C. Leslie: The Physical Metallurgy of Steels, Hemisphere Pub. Corp., Philadelphia, PA, 1981.

    Google Scholar 

  30. J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, and D.C. Joy: Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed., Springer, New York, NY, 1992.

  31. ASTM G102-89: Standard practice for calculation of corrosion rates and related information from electrochemical measurements, Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 1999, vol. 3, p. 416.

  32. J.K. Saha: Corrosion of Constructional Steels in Marine and Industrial Environment, Springer, New York, NY, 2013.

    Book  Google Scholar 

  33. A. Lasia: Electrochemical Impedance Spectroscopy and Its Applications, Springer, New York, NY, 2014.

    Book  Google Scholar 

  34. V.F. Lvovich: Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, John Wiley & Sons, New York, NY, 2012.

    Book  Google Scholar 

  35. G.E. Totten: Steel Heat Treatment Handbook, Taylor & Francis Group, New York, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mondal.

Additional information

Manuscript submitted March 1, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katiyar, P.K., Misra, S. & Mondal, K. Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel. Metall Mater Trans A 50, 1489–1501 (2019). https://doi.org/10.1007/s11661-018-5086-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5086-1