Skip to main content
Log in

Effect of Microstructural Characteristics on Mechanical Properties of Austenitic, Ferritic, and γ-α Duplex Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Materials properties of γ (austenite), α (ferrite), and γ-α duplex stainless steels were experimentally examined using samples with different grain sizes (8 to 1000 µm) and different ratios of the γ to α phase (γ proportion: 35 to 78 pct). The mechanical properties (hardness and tensile strength) of the duplex stainless steel were about 1.5 times higher than those of the austenitic and ferritic stainless steels. Two main reasons for the high strength of duplex stainless steel were identified as follows: (i) severe interruption of slip deformation in the γ phase on the α phase; (ii) a high misorientation angle around phase boundaries between the γ and α phases, caused by bonding of the different lattice structures: γ-fcc and α-bcc. The ultimate tensile strength of duplex stainless steel increased with increasing proportion of the γ phase to 50 pct, but decreased with a further increase in the amount of γ phase. The mechanical properties improved with decreasing grain size of the stainless steels, which follows the Hall–Petch relationship; however, the reverse relationship was obtained for ferritic stainless steel, especially with large grain sizes (100 to 1000 µm), in which the size of hard Cr23C6 precipitates increased with increasing grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X.H. Chen, J. Lu, L. Lu, and K. Lu: Scripta Mater. 2005, vol. 52, pp. 1039–44.

    Article  Google Scholar 

  2. P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, and Y.Y. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3210–6.

    Article  Google Scholar 

  3. M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski, and Z. Bojar: Mater. Sci. Eng. A, 2016, vol. 677, pp. 1–10.

    Article  Google Scholar 

  4. N. Saito, M. Mabuchi, M. Nakanishi, I. Shigematsu, G. Yamauchi, and M. Nakamura: J. Mater. Sci., 2001, vol. 36, pp. 3229–32.

    Article  Google Scholar 

  5. C.H. Hsu, C.K. Lin, K.H. Huang, and K.L. Ou: Surf. Coat. Technol., 2013, vol. 231, pp. 380–4.

    Article  Google Scholar 

  6. V.S. Moura, L.D. Lima, J.M. Pardal, A.Y. Kina, R.R.A. Corte, and S.S.M. Tavares: Mater. Charact., 2008, vol. 59, pp. 1127–32.

    Article  Google Scholar 

  7. J.K. Sahu, U. Krupp, R.N. Ghosh, and H.-J. Christ: Mater. Sci. Eng. A, 2009, vol. 508, pp. 1–14.

    Article  Google Scholar 

  8. W. Reick, M. Pohl, and A.F. Padilha: ISIJ Int., 1998, vol. 38, pp. 567–71.

    Article  Google Scholar 

  9. A. Mateo, L. Llanges, M. Anglanda, A. Redjaïmia, and G. Metauer: J. Mater. Sci., 1997, vol. 32, pp. 4533–40.

    Article  Google Scholar 

  10. T. Kuroda: Trans. JWRI, 2005, vol. 34, pp. 63–8.

    Google Scholar 

  11. J.O. Nilsson, and A. Wilson: Mater. Sci. Tech., 1993, vol. 9, pp. 545–54.

    Article  Google Scholar 

  12. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Mater. Sci. Eng. A, 2004, vol. 381, pp. 71–9.

    Article  Google Scholar 

  13. I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, and R. Kaibyshev: Mater. Sci. Eng. A, 2012, vol. 545, pp. 176–86.

    Article  Google Scholar 

  14. J. Schiøtz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen: Phys. Rev. B, 1999, vol. 60, pp. 11971–83.

    Article  Google Scholar 

  15. M. Okayasu, H. Fukui, H. Ohfuji, and T. Shiraishi: Mater. Sci. Technol., 2014, vol. 30, pp. 301–8.

    Article  Google Scholar 

  16. A. Iza-Mendia, A. Piñol-Juez, J.J. Urcola, and I. Gutérrez: Metall. Mater. Trans. A, 1998, vol. 29, pp. 975–86.

    Google Scholar 

  17. B.P. Kashyap, and K. Tangri: Acta Metall. Mater., 1995, vol. 43, pp. 3971–81.

    Article  Google Scholar 

  18. M. Kowaka: Zairyo, 1974, vol. 23, pp. 924–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Okayasu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Manuscript submitted August 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okayasu, M., Ishida, D. Effect of Microstructural Characteristics on Mechanical Properties of Austenitic, Ferritic, and γ-α Duplex Stainless Steels. Metall Mater Trans A 50, 1380–1388 (2019). https://doi.org/10.1007/s11661-018-5083-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5083-4

Navigation