Skip to main content
Log in

Effect of Mn and C on Grain Growth in Mn Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain growth in Fe-Mn austenites was examined at 1373 K and 1473 K as a function of Mn (0 to 30 wt pct) and carbon (0 to 0.5 wt pct) content. The addition of Mn had the effect of reducing the rate of grain growth. The observed inhibiting effect of Mn is believed to be mainly due to an increase in the occurrence of annealing twins with increasing Mn content. It is hypothesized that, upon intersecting with High-Angle Grain Boundaries (HAGBs), the twins result in low-energy, low-mobility boundary segments which ultimately slow the overall growth kinetics. Solute drag does not appear to significantly contribute to the slowing of the grain growth kinetics for Mn contents greater than 6 wt pct. Atom probe tomography studies confirmed weak or negligible segregation of Mn to HAGBs. The carbon content had a small but measurable effect on the grain growth kinetics. Reduction of the carbon content in an Fe-30 wt pct Mn alloy resulted in a decrease in effective grain boundary mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.J.Humphreys, M.Hatherly:RECRYSTALLIZATION and Related Annealing Phenomena, Elsevier, Oxford, 2004.

    Google Scholar 

  2. M. Winning, A. D. Rollett, G. Gottstein, D. J. Srolovitz, A. Lim: Philos. Mag., 2010, vol. 90, pp. 3107-28.

    Article  Google Scholar 

  3. Y. Huang, F. J. Humphreys: Acta Materialia., 1999, vol. 47, pp. 2259-68.

    Article  Google Scholar 

  4. Y. Huang, F. J. Humphreys: Acta Materialia., 2000, vol. 48, pp. 2017-30.

    Article  Google Scholar 

  5. A.Karma, Z. T. Trautt and Y. Mishin: Physical Review Letters, vol. 109, 095501 (2012) .

    Article  Google Scholar 

  6. D.L. Olmsted, E.A. Holm and S.M. Foiles: Acta Materialia., 2009, vol. 57, pp. 3694-03.

    Article  Google Scholar 

  7. M Upmanyu, DJ Srolovitz, LS Shvindlerman, G Gottstein (1999) Acta Mater. 47:3901-14.

    Article  Google Scholar 

  8. J.W. Cahn and J.E. Taylor: Acta Materialia., 2004, vol. 52, pp. 4887-98.

    Article  Google Scholar 

  9. R. A. Vandermeer, D. Juul. Jensen and E. Woldt: Metall Mater Trans A., 1997, vol. 28, pp. 749-54.

    Article  Google Scholar 

  10. K. Lücke, K. Detert: Acta Metall., 1957, vol. 5, pp. 628-37.

    Article  Google Scholar 

  11. J.W. Cahn: Acta Metall., 1962, vol. 10, pp. 789-98.

    Article  Google Scholar 

  12. M. Hillert, B.O. Sundman: Acta Metall., 1976, vol. 24, pp. 731-43.

    Article  Google Scholar 

  13. D. Drabble, University of Canterbury, Mechanical Engineering, PhD Thesis, 2010.

  14. D. Brandon: Acta Metall., 1966, vol. 14, pp. 1479-84.

    Article  Google Scholar 

  15. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, B. Gorman: Ultramicroscopy., 2007, vol. 107, pp. 131-39.

    Article  Google Scholar 

  16. P.J. Felfer,T. Alam, S.P. Ringer, J.M. Cairney: Microsc Res Tech., 2012, vol. 75, pp. 484-91.

    Article  Google Scholar 

  17. B . Gault, M.P. Moody, J.M. Cairney, S.P. Ringer: Atom Probe Microscopy, Springer Science & Business Media, New York, 2012, pp. 71-110.

    Google Scholar 

  18. M. Militzer,T. Garcin, W.J. Poole: Mater Sci Forum., 2013, vol. 753, pp. 25-30.

    Article  Google Scholar 

  19. M. Bhattacharyya, McMaster University, Materials Science and Engineering, PhD Thesis, 2018.

  20. A. Ferraiuolo, A. Smith, J.G. Sevillano, F. de las Cuevas, G. Pratolongo, H. Gouveia, M. Mendes. Rodrigues and P. Karjalainen: Contract RFSRCT-00030, Res Program Res Fund Coal Steel, Eur Union. 2009.

  21. K. Furumai, H. Zurob, A. Phillion: ISIJ Int (Under Rev. 2018).

  22. M.K. Rehman, H.S.Zurob: Metall Mater Trans A.,2013, vol. 44, pp. 1862-71.

    Article  Google Scholar 

  23. M . Herbig, M. Kuzmina, C. Haase, R.K.W. Marceau, I. Gutierrez-urrutia, D. Haley: Acta Mater., 2015, vol. 83, pp. 37-47.

    Article  Google Scholar 

  24. M. Kuzmina, D. Ponge, D. Raabe:Acta Mater., 2015, vol. 86, pp. 182-92.

    Article  Google Scholar 

  25. K.H. Kwon, Y. Ha, K. Hono, N.J. Kim: Scr Mater., 2013, vol. 69, pp. 420-23.

    Article  Google Scholar 

  26. F. Nikbakht, M. Nasim, C. Davies, E.A Wilson, H. Adrian: Mater Sci Technol., 2010, vol. 26, pp. 552-558.

    Article  Google Scholar 

  27. N.H. Heo, J.W. Nam, Y. Heo, S. Kim: Acta Mater., 2013, vol. 61, pp. 4022-4034.

    Article  Google Scholar 

  28. J. Nakano, P.J. Jacques:CALPHAD Comput Coupling Phase Diagrams and Thermochem., 2010, vol. 34, pp. 167-75.

    Article  Google Scholar 

  29. M. Ghasri Khouzani, McMaster University, Materials Science and Engineering, PhD Thesis, 2015.

  30. Y. Lee, C. Choi: Metall Mater Trans A., 2000, vol. 31A, pp. 355-60.

    Article  Google Scholar 

  31. A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck: Metall Mater Trans A., 2009, vol. 40, pp. 3076-90.

    Article  Google Scholar 

  32. W. Charnock, J. Nutting: Met Sci J., 1967, vol. 1, pp. 123-127.

    Article  Google Scholar 

  33. G. Miyamoto, N. Iwata, N. Takayama and T. Furuhara: Acta Materialia., 2010, vol. 58, pp. 6393-03.

    Article  Google Scholar 

  34. T.H. Chuang, C.H. Tsai, H.C. Wang, C.C. Chang, C.H.Chuang, J.D.Lee and H.H.Tsai: J Electron Mater., 2012, vol. 41, pp. 3215-22.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank NSERC (Canada) for financial support. MB thanks Mr. C. Butcher for his guidance with electropolishing and EBSD, Mr. J. Garrett for vacuum sealing the samples for all the grain growth experiments, Mr. K. Furumai for allowing us to use the Fe-1Mn microstructure, and Professor. G. Miyamoto for his help in grain boundary reconstruction from EBSD data. MB would also like to thank Dr. T. Garcin and Dr. M. Militzer (Department of Materials Science and Engineering, University of British Columbia) for their help with the LUMet measurements, and Dr. F. Fazeli and Mr. J .Saragosa (CanmetMATERIALS, Hamilton, Canada) for their help with thermal etching experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumanti Bhattacharyya.

Additional information

Manuscript submitted May 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, M., Langelier, B., Purdy, G.R. et al. Effect of Mn and C on Grain Growth in Mn Steels. Metall Mater Trans A 50, 905–914 (2019). https://doi.org/10.1007/s11661-018-5032-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5032-2

Navigation