Skip to main content

Advertisement

Log in

Effect of Silicon Content on the Microstructure and Mechanical Properties of Ti-Si-B-C Nanocomposite Hard Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The content of the individual elements in the nanocomposite hard multicomponent coatings is known to affect the phase formation during deposition and the properties of the coatings. Silicon is one such element, which has been shown to improve or alter the properties of the nanocomposite hard coating systems. In the present work, we investigated the effect of Si addition on the microstructure, phase, and mechanical behavior of Ti-Si-B-C nanocomposite hard films deposited by direct current (DC) magnetron sputtering. X-ray photoelectron spectroscopy (XPS) analyses reveal that, with the increase of Si content, SiB4 and TiSi2 softer phases (compared to the hard phases of TiB2 and B4C) are formed. The Ti-Si-B-C films deposited with 13.4 at. pct Si content show maximum hardness ~ 32.55 GPa and modulus ~ 381.6 GPa. With the increase of Si content in the films, the hardness and modulus are decreased. The H/E ratio, which is a measure of materials’ ability to take the strain prior to deformation, is also decreased with the increase of Si content, suggesting the lowering of toughness of the films with higher Si content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. K. Bewilogua, M. Keunecke, and M. Weber: Hard and Superhard Coatings for Tribological Applications, Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig, 2006.

    Google Scholar 

  2. H.A. Jehn and M.E. Baumgartner: Surf. Coat. Technol., 1992, vols. 54–55, pp. 108–14.

    Article  Google Scholar 

  3. H.A. Jehn: Surf. Coat. Technol., 2000, vol. 125, pp. 212–17

    Article  Google Scholar 

  4. V.H. Derflinger, A. Schutz, and M. Ante: Surf. Coat. Technol., 2006, vol. 200, pp. 4693–4700.

    Article  Google Scholar 

  5. Robert B. Heimann: Plasma-Spray Coating: Principles and Applications, VCH Publishers, New York, NY, 1996.

    Google Scholar 

  6. P.H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens: Progr. Mater Sci., 2006, vol. 51, pp. 1032–1114.

    Article  Google Scholar 

  7. P.H. Mayrhofer and C. Mitterer: Vac. Sci. Technol., 2003, vol. 4, pp. 71–97

    Google Scholar 

  8. M. Diserens, J. Patscheider, and F. Levy: Surf. Coat. Technol., 1998, vols. 108–109, pp. 241–46.

    Article  Google Scholar 

  9. S. Veprek, Maritza G.J. Veprek-Heijman, P. Karvankova, and J. Prochazka: Thin Solid Films, 2005, 476, 1–29.

    Article  Google Scholar 

  10. J. Musil: Surf. Coat. Technol., 2012, vol. 207, pp. 50–65.

    Article  Google Scholar 

  11. J. Wagner, D. Hochauer, C. Mitterer, M. Penoy, C. Michotte, W. Wallgram, and M. Kathrein: Surf. Coat. Technol., 2006, vol. 201, pp. 4247–52.

    Article  Google Scholar 

  12. A. Pelisson, M. Parlinska-Wojtan, H. Hug, and J. Patscheider: Surf. Coat. Technol., 2007, vol. 202, pp. 884–89.

    Article  Google Scholar 

  13. H.C. Barshilia, M. Ghosh, R. Ramakrishna, and K.S. Rajam: Appl. Surf. Sci., 2010, 256, 6420–26.

    Article  Google Scholar 

  14. M. Zhang, J. Jiang, P. Mares, J. Houska, J. Vlcek, and E.I. Meletis: Appl. Surf. Sci., 2015, vol. 357B, pp. 1343–54.

    Article  Google Scholar 

  15. S.K. Mishra, A.S. Bhattacharyya, P. Mahato, and L.C. Pathak: Surf. Coat. Technol., 2012, vol. 207, pp. 19–23.

    Article  Google Scholar 

  16. S.K. Mishra, P. Mahto, B. Mahto, and L.C. Pathak: Appl. Surf. Sci., 2013, vol. 266, pp. 209–13.

    Article  Google Scholar 

  17. P. Mérel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot: Appl. Surf. Sci., 1998, vol. 136, pp. 105–10.

    Article  Google Scholar 

  18. D.A. Jaeger: Ph.D. Thesis, 2012.

  19. G. Bhargava, I. Gouzman, C.M. Chun, T.A. Ramanarayanan, and S.L. Bernasek: Appl. Surf. Sci., 2007, vol. 253, pp. 4322–29.

    Article  Google Scholar 

  20. J.C. Dupin, D. Gonbeau, H. Benqlilou-Moudden, P. Vinatier, and A. Levasseur: Thin Solid Film, 2001, vol. 384, pp. 23–32.

    Article  Google Scholar 

  21. H.C. Barshilia, B. Deepthi, A.S.A. Prabhu, and K.S. Rajam: Surf. Coat. Technol., 2006, vol. 201, pp. 329–37.

    Article  Google Scholar 

  22. L.S. Sigl: J. Eur. Ceram. Soc., 1998, vol. 18, pp. 1521–29.

    Article  Google Scholar 

  23. F. Thévenot: J. Eur. Ceram. Soc., 1990, vol. 6, pp. 205–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mishra.

Additional information

Manuscript submitted February 3, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, D., Banerjee, D. & Mishra, S.K. Effect of Silicon Content on the Microstructure and Mechanical Properties of Ti-Si-B-C Nanocomposite Hard Coatings. Metall Mater Trans A 50, 894–904 (2019). https://doi.org/10.1007/s11661-018-5028-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5028-y

Navigation