Skip to main content

Advertisement

Log in

Optimization of the Electrophoretic Deposition Parameters for Biocomposite Hydroxyapatite/Chitosan/Collagen/h-BN Coatings on Ti6Al4V Biomedical Implants

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti6Al4V alloy biomedical implant materials were coated with a biocomposite hydroxyapatite/chitosan/collagen/h-BN layer using electrophoretic deposition at room temperature. Response surface methodology (RSM) and central composite design (CCD) were employed for modeling and optimizing the electrophoretic deposition parameters of chitosan concentration, deposition potential, and agitation speed. The mutual effects of these parameters on the responses (deposition yield and Ecorr) have been analyzed and displayed by response surface plots. Predicted and experimental values agreed well with each other. The average absolute errors between experimental and predicted values were calculated as 2.0 and 2.2 pct for response-1 (deposition yield) and response-2 (Ecorr), respectively. A 5-level-3-factor experimental design has been utilized to optimize electrophoretic deposition parameters. According to deposition yield and Ecorr models, optimized values were for chitosan concentration: 2.57 and 2.59 g/L, for deposition potential: 16.09 and 16.25 V, and for agitation speed: 247 and 229 rpm, respectively. The findings of this research suggest that statistical design methodologies (i.e., RSM and CCD) may effectively be employed for the modeling and optimizing of multi-electrophoretic deposition parameters. These results are encouraging and may be practiced for functionalization of Ti6Al4V biomedical implant devices to provide better in vivo biocompatibility performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. [1] S.V. Dorozhkin, J. Mater. Sci., 2009, vol. 44. pp. 2343-2387.

    Article  Google Scholar 

  2. [2] H. Shigeishi, M. Takechi, M. Nishimura, M. Takamoto, M. Minami, K. Ohta, N. Kamata, Dent. Mater. J., 2012, vol. 31. pp. 54-60.

    Article  Google Scholar 

  3. [3] M.-C. Wang, H.-T. Chen, W.-J. Shih, H.-F. Chang, M.-H. Hon, I.M. Hung, Ceram. Int., 2015, vol. 41. pp. 2999-3008.

    Article  Google Scholar 

  4. [4] R. Drevet, A. Viteaux, J.C. Maurin, H. Benhayoune, RSC Adv., 2013, vol. 3. pp. 11148-11154.

    Article  Google Scholar 

  5. [5] S. Heydarian, Z. Ranjbar, S. Rastegar, Polym.-Plast. Technol. Eng., 2015, vol. 54. pp. 1193-1200.

    Article  Google Scholar 

  6. [6] W.N. Capello, J.A. D’Antonio, R.G. Geesink, J.R. Feinberg, M. Naughton, Clin. Orthop. Relat. Res., 2009, vol. 467. pp. 155-165.

    Article  Google Scholar 

  7. [7] Y. Chang, X. Yan, Q. Wang, L. Ren, J. Tong, J. Zhou, Carbohydr. Polym., 2017, vol. 157. pp. 1413-1418.

    Article  Google Scholar 

  8. [8] L. Nie, D. Chen, J. Fu, S.H. Yang, R.X. Hou, J.P. Suo, Biochem. Eng. J., 2015, vol. 98. pp. 29-37.

    Article  Google Scholar 

  9. [9] C.T. Wong, W.W. Lu, W.K. Chan, K.M.C. Cheung, K.D.K. Lukl, D.S. Lu, A.B.M. Rabie, L.F. Deng, J.C.Y. Leong, J. Biomed. Mater. Res. Part A, 2004, vol. 68A. pp. 513-521.

    Article  Google Scholar 

  10. [10] F. Sun, X. Pang, I. Zhitomirsky, J. Mater. Process. Technol., 2009, vol. 209. pp. 1597-1606.

    Article  Google Scholar 

  11. [11] D. Duraccio, F. Mussano, M.G. Faga, J. Mater. Sci., 2015, vol. 50. pp. 4779-4812.

    Article  Google Scholar 

  12. [12] H. Akazawa, Y. Ueno, Surf. Coat. Technol., 2015, vol. 266. pp. 42-48.

    Article  Google Scholar 

  13. [13] M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, Metall. Mater. Trans. A, 2015, vol. 46A. pp. 1394-1404.

    Article  Google Scholar 

  14. [14] S. Kehoe, J. Stokes, J. Mater. Eng. Perform., 2011, vol. 20. pp. 306-316.

    Article  Google Scholar 

  15. [15] M. Itokazu, W. Yang, T. Aoki, A. Ohara, N. Kato, Biomaterials, 1998, vol. 19. pp. 817-819.

    Article  Google Scholar 

  16. [16] F. Minguez, M. Agra, S. Luruena, C. Ramos, J. Prieto, Drugs Exp. Clin. Res., 1990, vol. 16. pp. 231-235.

    Google Scholar 

  17. [17] Y. Liu, K. de Groot, E.B. Hunziker, Bone, 2005, vol. 36. pp. 745-757.

    Article  Google Scholar 

  18. [18] S. Das, S. Kumar, B. Doloi, B. Bhattacharyya, Int. J. Adv. Manuf. Technol., 2016, vol. 86. pp. 829-839.

    Article  Google Scholar 

  19. [19] A. Rapacz-Kmita, C. Paluszkiewicz, A. Ślósarczyk, Z. Paszkiewicz, J. Mol. Struct., 2005, vol. 744. pp. 653-656.

    Article  Google Scholar 

  20. [20] J. Zhang, C.-S. Dai, J. Wei, Z.-H. Wen, Appl. Surf. Sci., 2012, vol. 261. pp. 276-286.

    Article  Google Scholar 

  21. [21] X. Wang, J. Ma, Y. Wang, B. He, Biomaterials, 2001, vol. 22. pp. 2247-2255.

    Article  Google Scholar 

  22. [22] F. Zhao, W.L. Grayson, T. Ma, B. Bunnell, W.W. Lu, Biomaterials, 2006, vol. 27. pp. 1859-1867.

    Article  Google Scholar 

  23. [23] C. Paluszkiewicz, E. Stodolak, M. Hasik, M. Blazewicz, Spectrochim. Acta, Part A, 2011, vol. 79. pp. 784-788.

    Article  Google Scholar 

  24. [24] J.W. Lee, A. Kobayashi, T. Nakano, J. Bone Miner. Metab., 2017, vol. 35. pp. 308-314.

    Article  Google Scholar 

  25. [25] Y.Y. Shi, M. Li, Q. Liu, Z.J. Jia, X.C. Xu, Y. Cheng, Y.F. Zheng, J Mater Sci: Mater Med, 2016, vol. 27. pp. 48.

    Google Scholar 

  26. [26] R.A. Ahmed, R. Farghali, A. Fekry, Int. J. Electrochem. Sci, 2012, vol. 7. pp. 7270-7282.

    Google Scholar 

  27. [27] C. Wen, Surface Coating and Modification of Metallic Biomaterials, Elsevier Science, 2015.

    Google Scholar 

  28. [28] K. Vathsala, T.V. Venkatesha, B.M. Praveen, K.O. Nayana, Engineering, 2010, vol. 2(8). pp. 580–584.

    Article  Google Scholar 

  29. M. Zhang, Z. Li, P. Jiang, T. Lin, X. Li, D. Sun, J. Appl. Polym. Sci., 2017, vol. 134, art. no. 45109.

  30. M.-M. Chen, Y.-Q. Huang, H. Guo, Y. Liu, J.-H. Wang, J.-L. Wu, Q.-Q. Zhang, J. Appl. Polym. Sci., 2014, vol. 131, art. no. 40998.

  31. [31] I.C. Wilkie, M.D.C. Carnevali, F. Andrietti, Bolletino di zoologia, 1994, vol. 61. pp. 39-51.

    Article  Google Scholar 

  32. [32] X.T. Wu, M.L. Mei, Q.L. Li, C.Y. Cao, J.L. Chen, R. Xia, Z.H. Zhang, C.H. Chu, Materials, 2015, vol. 8. pp. 7889-7899.

    Article  Google Scholar 

  33. [33] Y. Kawasaki, S. Sotome, T. Yoshii, I. Torigoe, H. Maehara, Y. Sugata, M. Hirano, N. Mochizuki, K. Shinomiya, A. Okawa, J. Biomed. Mater. Res., Part B, 2010, vol. 92B. pp. 161-167.

    Article  Google Scholar 

  34. [34] C.H. Park, H.R. Pant, C.S. Kim, Dig J Nanomater Biostruct., 2013, vol. 8. pp. 1227-1234.

    Google Scholar 

  35. [35] R. Nie, R. Sang, X. Ma, Y. Zheng, X. Cheng, W. Li, L. Guo, H. Jin, Y. Wu, J. Catal., 2016, vol. 344. pp. 286-292.

    Article  Google Scholar 

  36. [36] N. Kostoglou, K. Polychronopoulou, C. Rebholz, Vacuum, 2015, vol. 112. pp. 42-45.

    Article  Google Scholar 

  37. [37] C.L. Zhang, Y. He, Y.Q. Zhan, L. Zhang, H. Shi, Z.H. Xu, Polym. Adv. Technol., 2017, vol. 28. pp. 214-221.

    Article  Google Scholar 

  38. [38] A. Tozar, I.H. Karahan, Appl. Surf. Sci., 2018, vol. 452. pp. 322-336.

    Article  Google Scholar 

  39. [39] A. Tozar, I.H. Karahan, Surf. Coat. Technol., 2018, vol. 340. pp. 167-176.

    Article  Google Scholar 

  40. [40] E. Husain, T.N. Narayanan, J.J. Taha-Tijerina, S. Vinod, R. Vajtai, P.M. Ajayan, ACS Applied Materials & Interfaces, 2013, vol. 5. pp. 4129-4135.

    Article  Google Scholar 

  41. [41] M. Cui, S. Ren, J. Chen, S. Liu, G. Zhang, H. Zhao, L. Wang, Q. Xue, Appl. Surf. Sci., 2017, vol. 397. pp. 77-86.

    Article  Google Scholar 

  42. [42] J. Tharajak, T. Palathai, N. Sombatsompop, Surf. Coat. Technol., 2017, vol. 321. pp. 477-483.

    Article  Google Scholar 

  43. [43] J.J. Maurer, CHAPTER 6 - Elastomers A2 - TURI, EDITH A, Thermal Characterization of Polymeric Materials, Academic Press, 1981, pp. 571-708.

    Book  Google Scholar 

  44. [44] T. Ali, K.I. Hakkı, Bioinspir. Biomim. Nan., 2018, vol. 7. pp. 149-158.

    Google Scholar 

  45. [45] A. Oyane, K. Onuma, A. Ito, H.M. Kim, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. Part A, 2003, vol. 64. pp. 339-348.

    Article  Google Scholar 

  46. [46] J. Zawadzki, H. Kaczmarek, Carbohydr. Polym., 2010, vol. 80. pp. 394-400.

    Article  Google Scholar 

  47. [47] A. Puchalska, M. Mucha, Prog. Chem. Appl. Chitin, 2011, vol. 16. pp. 31-42.

    Google Scholar 

  48. [48] A. Pawlak, M. Mucha, Thermochimica Acta, 2003, vol. 396. pp. 153-166.

    Article  Google Scholar 

  49. [49] V. Salles, S. Bernard, R. Chiriac, P. Miele, Journal of the European Ceramic Society, 2012, vol. 32. pp. 1867-1871.

    Article  Google Scholar 

  50. [50] W.C. Oliver, G.M. Pharr, J. Mater. Res., 2011, vol. 7. pp. 1564-1583.

    Article  Google Scholar 

  51. [51] C. Tromas, J. Colin, C. Coupeau, J.C. Girard, J. Woirgard, J. Grilhé, Eur. Phys. J. AP, 1999, vol. 8. pp. 123-128.

    Article  Google Scholar 

  52. S. Pathak, J.L. Riesterer, S.R. Kalidindi, J. Michler, Appl. Phys. Lett., 2014, vol. 105, art. no. 161913

  53. [53] A.M. Díez-Pascual, M.A. Gómez-Fatou, F. Ania, A. Flores, Prog. Mater. Sci., 2015, vol. 67. pp. 1-94.

    Article  Google Scholar 

Download references

Acknowledgment

Financial support for this research by the Mustafa Kemal University Scientific Research Projects through the grant from Mustafa Kemal University Research Foundation (Project No. 13920) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tozar.

Additional information

Manuscript submitted January 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozar, A., Karahan, İ.H. & Yücel, Y. Optimization of the Electrophoretic Deposition Parameters for Biocomposite Hydroxyapatite/Chitosan/Collagen/h-BN Coatings on Ti6Al4V Biomedical Implants. Metall Mater Trans A 50, 1009–1020 (2019). https://doi.org/10.1007/s11661-018-5010-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5010-8

Navigation