Effect of Direct Aging on Heat-Affected Zone and Tensile Properties of Electrospark-Deposited Alloy 718


The degradation of high-temperature components in the aerospace industry becomes a greater concern with the use of higher operating temperatures and increased operating cycles. Although the repair of defects can extend component lifespans, welding often results in a heat-affected zone (HAZ) or fusion zone with reduced mechanical properties. Due to the low energy input of electrospark deposition (ESD), repaired components should be less susceptible to mechanical property deterioration. ESD of alloy 718 on solution-annealed and aged alloy 718 base metal is evaluated in the as-deposited and direct-aged condition. HAZ formation is measured at 80 µm on an annealed substrate and 40 µm on an aged substrate. Direct aging of depositions eliminates the heat-affected zone and introduces strengthening phases in the deposition that results in a hardness equivalent to that of the aged base metal. The yield strength of as-deposited and direct-aged alloy 718 depositions is equivalent to the annealed and aged base metal, respectively, whereas the ultimate strength is, respectively, 16 and 8 pct lower. Decreased ultimate strength is attributed to lower fracture toughness of brittle secondary phases and splat boundaries from the ESD process that remain after the direct aging heat treatment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    D.K. Huzel: Modern Engineering for Design of Liquid-Propellant Rocket Engines, American Institute of Aeronautics and Astronautics, 1992.

  2. 2.

    B.A. Cowles: Int. J. Fract., 1996, vol. 80, pp. 147–63.

    CAS  Article  Google Scholar 

  3. 3.

    J.H. Perepezko: Science, 2009, vol. 326, pp. 1068–69.

    CAS  Article  Google Scholar 

  4. 4.

    G.A. Greene and C.C. Finfrock: Oxid. Met., 2001, vol. 55, pp. 505–21.

  5. 5.

    D.F. Paulonis and J.J. Schirra: in Superalloys 718, 625, 706 and Various Derivatives (2001), vol. 718, TMS, 2001, pp. 13–23.

  6. 6.

    R.E. Schafrik, D.D. Ward, and J.R. Groh: in Superalloys 718, 625, 706 and Various Derivatives (2001), TMS, 2001, pp. 1–11.

  7. 7.

    R.P. Jewett and J.A. Halchak: in Superalloys 718, 625 and Various Derivatives (1991), TMS, 1991, pp. 749–60.

  8. 8.

    A. Lešnjak and J. Tušek: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 391–96.

    Article  Google Scholar 

  9. 9.

    J. Liu, R. Wang, and Y. Qian: Surf. Coatings Technol., 2005, vol. 200, pp. 2433–37.

    CAS  Article  Google Scholar 

  10. 10.

    E. Anisimov, A.K. Khan, and O.A. Ojo: Mater. Charact., 2016, vol. 119, pp. 233–40.

    CAS  Article  Google Scholar 

  11. 11.

    L.L. Parimi, G. Ravi, D. Clark, and M.M. Attallah: Mater. Charact., 2014, vol. 89, pp. 102–11.

    CAS  Article  Google Scholar 

  12. 12.

    F. Liu, X. Lin, H. Leng, J. Cao, Q. Liu, C. Huang, and W. Huang: Opt. Laser Technol., 2013, vol. 45, pp. 330–35.

    CAS  Article  Google Scholar 

  13. 13.

    E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T.H. Gnaeupel-Herold, and D.S. Ng: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, vol. 48, pp. 5547–58.

  14. 14.

    K. Kulawik, P.A.A. Buffat, A. Kruk, A.M.M. Wusatowska-Sarnek, and A. Czyrska-Filemonowicz: Mater. Charact., 2015, vol. 100, pp. 74–80.

    CAS  Article  Google Scholar 

  15. 15.

    P.D. Enrique, Z. Jiao, N.Y. Zhou, and E. Toyserkani: J. Mater. Process. Technol., 2018, vol. 258, pp. 138–43.

    CAS  Article  Google Scholar 

  16. 16.

    X. Tingdong: Philos. Mag. Lett., 2006, vol. 86, pp. 501–10.

    CAS  Article  Google Scholar 

  17. 17.

    K. Banerjee: Mater. Sci. Appl., 2011, vol. 02, pp. 1243–55.

    CAS  Google Scholar 

  18. 18.

    J. Teimouri, S.R. Hosseini, and K. Farmanesh: Metallogr. Microstruct. Anal., 2018, vol. 7, pp. 268–76.

    CAS  Article  Google Scholar 

  19. 19.

    X. Liu, J. Dong, X. Xie, and K.-M. Chang: Mater. Sci. Eng. A, 2001, vol. 303, pp. 262–66.

    Article  Google Scholar 

  20. 20.

    M. Anderson, A.L. Thielin, F. Bridier, P. Bocher, and J. Savoie: Mater. Sci. Eng. A, 2017, vol. 679, pp. 48–55.

    CAS  Article  Google Scholar 

  21. 21.

    G.F.V. Voort, J.W. Bowman, and R.B. Frank: Miner. Met. Mater. Socitety, 1994, pp. 489–98.

  22. 22.

    L.M. Suave, D. Bertheau, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, and J. Laigo: MATEC Web Conf., 2014, vol. 14, p. 21001.

    Article  Google Scholar 

  23. 23.

    A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A.K. Koul: Mater. Des., 2013, vol. 52, pp. 791–800.

    CAS  Article  Google Scholar 

  24. 24.

    Y. Ruan, A. Mohajerani, and M. Dao: Sci. Rep., 2016, vol. 6, pp. 1–11.

    Article  Google Scholar 

  25. 25.

    M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, ASM International, 2002.

  26. 26.

    R. Vincent: Acta Metall., 1985, vol. 33, pp. 1205–16.

    CAS  Article  Google Scholar 

  27. 27.

    T. Chen, H. John, J. Xu, Q. Lu, J. Hawk, and X. Liu: Corros. Sci., 2013, vol. 77, pp. 230–45.

    CAS  Article  Google Scholar 

  28. 28.

    X. Li, J. Xie, and Y. Zhou: J. Mater. Sci., 2005, vol. 40, pp. 3437–43.

    CAS  Article  Google Scholar 

  29. 29.

    X. Cao, B. Rivaux, M. Jahazi, J. Cuddy, and A. Birur: J. Mater. Sci., 2009, vol. 44, pp. 4557–71.

    CAS  Article  Google Scholar 

  30. 30.

    S. Kou: Welding Metallurgy, Second Edition, John Wiley & Sons, Inc., Hoboken, 2003.

  31. 31.

    C.A. Huang, T.H. Wang, C.H. Lee, and W.C. Han: Mater. Sci. Eng. A, 2005, vol. 398, pp. 275–81.

    Article  Google Scholar 

  32. 32.

    M. Sundararaman and P.J. Potdar: Superalloys 718, 625, 706 Var. Deriv., 2005, pp. 477–86.

  33. 33.

    Y.-N. Zhang, X. Cao, P. Wanjara, and M. Medraj: J. Mater. Res., 2014, vol. 29, pp. 2006–20.

    CAS  Article  Google Scholar 

  34. 34.

    C. Yeni and M. Koçak: Fatigue Fract. Eng. Mater. Struct., 2006, vol. 29, pp. 546–57.

    CAS  Article  Google Scholar 

  35. 35.

    R. Cortés, E.R.R. Barragán, V.H.H. López, R.R.R. Ambriz, and D. Jaramillo: Int. J. Adv. Manuf. Technol., 2017, vol. 94, pp. 3949–61.

    Article  Google Scholar 

  36. 36.

    P.D. Enrique, Z. Jiao, N.Y. Zhou, and E. Toyserkani: Mater. Sci. Eng. A, 2018, vol. 729, pp. 268–75.

    CAS  Article  Google Scholar 

  37. 37.

    J.J.S. Dilip and G.D. Janaki Ram: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2014, vol. 45, pp. 182–92.

Download references


This work was performed with funding support from the Natural Sciences and Engineering Research Council of Canada (NSERC), Huys Industries, and the CWB Welding Foundation, in collaboration with the Centre for Advanced Materials Joining and the Multi-Scale Additive Manufacturing Lab at the University of Waterloo.

Author information



Corresponding author

Correspondence to Pablo D. Enrique.

Additional information

Manuscript submitted July 2, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enrique, P.D., Jiao, Z. & Zhou, N.Y. Effect of Direct Aging on Heat-Affected Zone and Tensile Properties of Electrospark-Deposited Alloy 718. Metall Mater Trans A 50, 285–294 (2019). https://doi.org/10.1007/s11661-018-4997-1

Download citation