Skip to main content
Log in

Effect of Direct Aging on Heat-Affected Zone and Tensile Properties of Electrospark-Deposited Alloy 718

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The degradation of high-temperature components in the aerospace industry becomes a greater concern with the use of higher operating temperatures and increased operating cycles. Although the repair of defects can extend component lifespans, welding often results in a heat-affected zone (HAZ) or fusion zone with reduced mechanical properties. Due to the low energy input of electrospark deposition (ESD), repaired components should be less susceptible to mechanical property deterioration. ESD of alloy 718 on solution-annealed and aged alloy 718 base metal is evaluated in the as-deposited and direct-aged condition. HAZ formation is measured at 80 µm on an annealed substrate and 40 µm on an aged substrate. Direct aging of depositions eliminates the heat-affected zone and introduces strengthening phases in the deposition that results in a hardness equivalent to that of the aged base metal. The yield strength of as-deposited and direct-aged alloy 718 depositions is equivalent to the annealed and aged base metal, respectively, whereas the ultimate strength is, respectively, 16 and 8 pct lower. Decreased ultimate strength is attributed to lower fracture toughness of brittle secondary phases and splat boundaries from the ESD process that remain after the direct aging heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.K. Huzel: Modern Engineering for Design of Liquid-Propellant Rocket Engines, American Institute of Aeronautics and Astronautics, 1992.

  2. B.A. Cowles: Int. J. Fract., 1996, vol. 80, pp. 147–63.

    Article  CAS  Google Scholar 

  3. J.H. Perepezko: Science, 2009, vol. 326, pp. 1068–69.

    Article  CAS  Google Scholar 

  4. G.A. Greene and C.C. Finfrock: Oxid. Met., 2001, vol. 55, pp. 505–21.

  5. D.F. Paulonis and J.J. Schirra: in Superalloys 718, 625, 706 and Various Derivatives (2001), vol. 718, TMS, 2001, pp. 13–23.

  6. R.E. Schafrik, D.D. Ward, and J.R. Groh: in Superalloys 718, 625, 706 and Various Derivatives (2001), TMS, 2001, pp. 1–11.

  7. R.P. Jewett and J.A. Halchak: in Superalloys 718, 625 and Various Derivatives (1991), TMS, 1991, pp. 749–60.

  8. A. Lešnjak and J. Tušek: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 391–96.

    Article  Google Scholar 

  9. J. Liu, R. Wang, and Y. Qian: Surf. Coatings Technol., 2005, vol. 200, pp. 2433–37.

    Article  CAS  Google Scholar 

  10. E. Anisimov, A.K. Khan, and O.A. Ojo: Mater. Charact., 2016, vol. 119, pp. 233–40.

    Article  CAS  Google Scholar 

  11. L.L. Parimi, G. Ravi, D. Clark, and M.M. Attallah: Mater. Charact., 2014, vol. 89, pp. 102–11.

    Article  CAS  Google Scholar 

  12. F. Liu, X. Lin, H. Leng, J. Cao, Q. Liu, C. Huang, and W. Huang: Opt. Laser Technol., 2013, vol. 45, pp. 330–35.

    Article  CAS  Google Scholar 

  13. E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T.H. Gnaeupel-Herold, and D.S. Ng: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, vol. 48, pp. 5547–58.

  14. K. Kulawik, P.A.A. Buffat, A. Kruk, A.M.M. Wusatowska-Sarnek, and A. Czyrska-Filemonowicz: Mater. Charact., 2015, vol. 100, pp. 74–80.

    Article  CAS  Google Scholar 

  15. P.D. Enrique, Z. Jiao, N.Y. Zhou, and E. Toyserkani: J. Mater. Process. Technol., 2018, vol. 258, pp. 138–43.

    Article  CAS  Google Scholar 

  16. X. Tingdong: Philos. Mag. Lett., 2006, vol. 86, pp. 501–10.

    Article  CAS  Google Scholar 

  17. K. Banerjee: Mater. Sci. Appl., 2011, vol. 02, pp. 1243–55.

    CAS  Google Scholar 

  18. J. Teimouri, S.R. Hosseini, and K. Farmanesh: Metallogr. Microstruct. Anal., 2018, vol. 7, pp. 268–76.

    Article  CAS  Google Scholar 

  19. X. Liu, J. Dong, X. Xie, and K.-M. Chang: Mater. Sci. Eng. A, 2001, vol. 303, pp. 262–66.

    Article  Google Scholar 

  20. M. Anderson, A.L. Thielin, F. Bridier, P. Bocher, and J. Savoie: Mater. Sci. Eng. A, 2017, vol. 679, pp. 48–55.

    Article  CAS  Google Scholar 

  21. G.F.V. Voort, J.W. Bowman, and R.B. Frank: Miner. Met. Mater. Socitety, 1994, pp. 489–98.

  22. L.M. Suave, D. Bertheau, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, and J. Laigo: MATEC Web Conf., 2014, vol. 14, p. 21001.

    Article  Google Scholar 

  23. A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A.K. Koul: Mater. Des., 2013, vol. 52, pp. 791–800.

    Article  CAS  Google Scholar 

  24. Y. Ruan, A. Mohajerani, and M. Dao: Sci. Rep., 2016, vol. 6, pp. 1–11.

    Article  Google Scholar 

  25. M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, ASM International, 2002.

  26. R. Vincent: Acta Metall., 1985, vol. 33, pp. 1205–16.

    Article  CAS  Google Scholar 

  27. T. Chen, H. John, J. Xu, Q. Lu, J. Hawk, and X. Liu: Corros. Sci., 2013, vol. 77, pp. 230–45.

    Article  CAS  Google Scholar 

  28. X. Li, J. Xie, and Y. Zhou: J. Mater. Sci., 2005, vol. 40, pp. 3437–43.

    Article  CAS  Google Scholar 

  29. X. Cao, B. Rivaux, M. Jahazi, J. Cuddy, and A. Birur: J. Mater. Sci., 2009, vol. 44, pp. 4557–71.

    Article  CAS  Google Scholar 

  30. S. Kou: Welding Metallurgy, Second Edition, John Wiley & Sons, Inc., Hoboken, 2003.

  31. C.A. Huang, T.H. Wang, C.H. Lee, and W.C. Han: Mater. Sci. Eng. A, 2005, vol. 398, pp. 275–81.

    Article  Google Scholar 

  32. M. Sundararaman and P.J. Potdar: Superalloys 718, 625, 706 Var. Deriv., 2005, pp. 477–86.

  33. Y.-N. Zhang, X. Cao, P. Wanjara, and M. Medraj: J. Mater. Res., 2014, vol. 29, pp. 2006–20.

    Article  CAS  Google Scholar 

  34. C. Yeni and M. Koçak: Fatigue Fract. Eng. Mater. Struct., 2006, vol. 29, pp. 546–57.

    Article  CAS  Google Scholar 

  35. R. Cortés, E.R.R. Barragán, V.H.H. López, R.R.R. Ambriz, and D. Jaramillo: Int. J. Adv. Manuf. Technol., 2017, vol. 94, pp. 3949–61.

    Article  Google Scholar 

  36. P.D. Enrique, Z. Jiao, N.Y. Zhou, and E. Toyserkani: Mater. Sci. Eng. A, 2018, vol. 729, pp. 268–75.

    Article  CAS  Google Scholar 

  37. J.J.S. Dilip and G.D. Janaki Ram: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2014, vol. 45, pp. 182–92.

Download references

Acknowledgments

This work was performed with funding support from the Natural Sciences and Engineering Research Council of Canada (NSERC), Huys Industries, and the CWB Welding Foundation, in collaboration with the Centre for Advanced Materials Joining and the Multi-Scale Additive Manufacturing Lab at the University of Waterloo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo D. Enrique.

Additional information

Manuscript submitted July 2, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enrique, P.D., Jiao, Z. & Zhou, N.Y. Effect of Direct Aging on Heat-Affected Zone and Tensile Properties of Electrospark-Deposited Alloy 718. Metall Mater Trans A 50, 285–294 (2019). https://doi.org/10.1007/s11661-018-4997-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4997-1

Navigation