Abstract
Decomposition of metastable, isotropic, body-centered cubic γ-phase in the U-10 wt pct Mo alloys with varying Zr contents was investigated as function of heat treatment parameters (i.e., temperature and time) relevant to the fabrication of monolithic fuel plate in development for research and test reactors. Phase constituents and microstructural characterization was performed using X-ray diffraction via Rietveld refinement, scanning electron microscopy with quantitative image analysis, and analytical transmission electron microscopy. Results were compared with the amount of equilibrium phases calculated using the lever rule from the available ternary phase diagrams. After sequential three-step heat treatment (900 °C for 168 hours, 650 °C for 3 hours, and 560 °C for 1.5 hours) decomposition of γ-phase was observed in alloys containing 2 wt pct or higher Zr. Decomposition of γ-phase occurred by the depletion of Mo in γ-phase due to the formation of Mo2Zr. Formation of Mo2Zr at 900 °C and 650 °C produced γ-phase with low-Mo content which in turn promoted a faster onset of eutectoid decomposition at 560 °C. The U-10Mo-4Zr and U-10Mo-10Zr alloys had the highest amount of Mo2Zr, and exhibited the largest amount of γ-phase decomposition after the heat treatment at 560 °C. Cooling rate from the heat treatment at 560 °C did not influence the phase constituents of the U-10Mo-xZr alloys, but the slower cooling promoted the better-defined lamellae microstructure associated with eutectoid decomposition. Trace amount of δ-phase was also observed in the microstructure after the heat treatment at 560 °C, presumably due to local inhomogeneity in alloy compositions.
Similar content being viewed by others
References
D.D. Keiser, S.L. Hayes, M.K. Meyer, C.R. Clark, JOM, 2003, vol. 55, pp. 55-58.
J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Nuclear Engineering and Design, 1997, vol. 178, pp. 119-126.
A.L. S. van den Berghe, E. Koonen, L. Sannen, Advances in Science and Technology, 2010, vol. 73, pp. 78-90.
E. Wilson, A. Bergeron, J. Stillman, T. Heltemes, D. Jaluvka, L. Jamison, European Nuclear Society: European Research Reactor Conference, Rotterdam, Netherlands, 14-18 May 2017, RRFM 2017-A0110.
R. Newell, A. Mehta, Y.J. Park, D.D. Keiser Jr, Y.H. Sohn, Defect and Diffusion Forum, 2018, vol. 383, pp. 10-16.
R. Newell, A. Mehta, Y.J. Park, Y.H. Sohn, J.F. Jue, D.D. Keiser Jr, Defect and Diffusion Forum, 2017, vol. 375, pp. 18-28.
R.M. Hengstler, L. Beck, H. Breitkreutz, C. Jarousse, R. Jungwirth, W. Petry, W. Schmid, J. Schneider, N. Wieschalla, Journal of Nuclear Materials, 2010, vol. 402, pp. 74-80.
A. Mehta, L. Zhou, E.A. Schulz, D.D. Keiser, J.I. Cole, Y. Sohn, Journal of Phase Equilibria and Diffusion, 2018, vol. 39, pp. 246-254.
J.-F. Jue, B.H. Park, C.R. Clark, G.A. Moore, D.D. Keiser Jr, Nuclear technology, 2010, vol. 172, pp. 204-210.
G.A. Moore, M.C. Marshall, Idaho National Laboratory, 2010, INL/EXT-10-17774, pp 1-17.
R. Newell, Y. Park, A. Mehta, D. Keiser, Y. Sohn, Journal of Nuclear Materials, 2017, vol. 487, pp. 443-452.
J.-F. Jue, T.L. Trowbridge, C.R. Breckenridge, G.A. Moore, M.K. Meyer, D.D. Keiser, Journal of Nuclear Materials, 2015, vol. 460, pp. 153-159.
Y. Park, D. Keiser, Y. Sohn, Journal of Nuclear Materials, 2015, vol. 456, pp. 351-358.
E. Perez, B. Yao, D. Keiser, Y. Sohn, Journal of Nuclear Materials, 2010, vol. 402, pp. 8-14.
J.-F. Jue, D.D. Keiser, C.R. Breckenridge, G.A. Moore, M.K. Meyer, Journal of Nuclear Materials, 2014, vol. 448, pp. 250-258.
Y. Park, J. Yoo, K. Huang, D. Keiser, J. Jue, B. Rabin, G. Moore, Y. Sohn, Journal of Nuclear Materials, 2014, vol. 447, pp. 215-224.
Y. Park, N. Eriksson, D. Keiser, J. Jue, B. Rabin, G. Moore, Y. Sohn, Materials Characterization, 2015, vol. 103, pp. 50-57.
S. Neogy, M. Saify, S. Jha, D. Srivastava, M. Hussain, G. Dey, R. Singh, Journal of Nuclear Materials, 2012, vol. 422, pp. 77-85.
Y. Park, N. Eriksson, R. Newell, D. Keiser, Y. Sohn, Journal of Nuclear Materials, 2016, vol. 480, pp. 271-280.
H. Okamoto, Journal of Phase Equilibria and Diffusion, 2012, vol. 33, p. 497.
P. Repas, R. Goodenow, R. Hehemann, Trans. Am. Soc. Metals, 1964, vol. 57, pp. 150-163.
P. Repas, R. Goodenow, R. Hehemann, U.S. Army Materials Research Agency, Watertown, MA, USA, 1963, AMRA-CR-63-02/1(F).
C.A.W. Peterson, W.J. Steele, S.L. DiGiallonardo, University of California – Ernest O. Lawrence Radiation Laboratory, Livermore, CA, USA (Available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, VA, USA), 1964, UCRL-7824, pp. 1–27.
M. Meyer, G. Moore, J. Jue, D. Keiser, I. Glagolenko, D. Wachs, P. Murray, A. Robinson, F. Rice, H. Ozaltun, S. Miller, M. Okuniewski, B. Rabin, H. Glunz, N. Lybeck, Idaho National Laboratory, 2012 INL/EXT-12-26500, pp. 1–179.
K.H. Kim, H.J. Kwon, J.M. Park, Y.S. Lee, C.K. Kim, Journal of the Korean Nuclear Society, 2001, vol. 33, pp. 365-374.
M. Meyer, J. Gan, J. Jue, D. Keiser, E. Perez, A. Robinson, D. Wachs, N. Woolstenhulme, G. Hofman, Y. Kim, Nuclear Engineering and Technology, 2014, vol. 46, pp. 169-182.
R. Willard, A. Schmitt, Atomics International, California, 1964, NAA-SR-8956, pp. 1-33.
A. Shoudy, W. McHugh, M. Silliman, Radiation Damage in Reactor Materials, 1963, vol. 46 pp. 133-162.
H.M. Rietveld, Journal of applied Crystallography, 1969, vol. 2, pp. 65-71.
L. McCusker, R. Von Dreele, D. Cox, D. Louër, P. Scardi, Journal of Applied Crystallography, 1999, vol. 32, pp. 36-50.
C. Suryanarayana, M.G. Norton, X-ray diffraction: a practical approach, Springer Science & Business Media, New York, 1998.
O. Ivanov, G. Bagrov, Struct. Alloys Certain Syst. Cont. Uranium Thorium, 1963, pp. 131–53; (Republished by ASM Alloy Phase Diagram Center, ASM International, 2007).
O. Ivanov, G. Bagrov, Struct. Alloys Certain Syst. Cont. Uranium Thorium, 1963, pp. 154–76, (Republished by ASM Alloy Phase Diagram Center, ASM International, 2007).
R.J. Perez, B. Sundman, Calphad, 2003, vol. 27, pp. 253-262.
A. PazyPuente, J. Dickson, D. Keiser, Y. Sohn, Int. J. Refract. Met. Hard Mater., 2014, vol. 43, pp. 317–21.
C. Basak, R. Keswani, G. Prasad, H. Kamath, N. Prabhu, S. Banerjee, Journal of Nuclear Materials, 2009, vol. 393, pp. 146-152.
F. Rough, A. Bauer, Battelle Memorial Inst., 1958, BMI-1300, p. 41.
R.I. Sheldon, D.E. Peterson, Bulletin of Alloy Phase Diagrams, 1989, vol. 10, pp. 165-171.
Acknowledgment
This work was supported by the U.S. Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted June 1, 2018.
Rights and permissions
About this article
Cite this article
Mehta, A., Eriksson, N., Newell, R. et al. Phase Transformations and Microstructural Development in the U-10 Wt Pct Mo Alloy with Varying Zr Contents After Heat Treatments Relevant to the Monolithic Fuel Plate Fabrication Process. Metall Mater Trans A 50, 72–96 (2019). https://doi.org/10.1007/s11661-018-4987-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-018-4987-3