Skip to main content
Log in

Fabrication of Al-TiAl3 Composite Via In-Situ Accumulative Roll Bonding (ARB) and Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, titanium particles (with an average size of 48 µm) are dispersed throughout Al foils using the accumulative roll bonding method. The reaction between the particles and the matrix is subsequently activated thermally by post-rolling annealing. The in-situ reaction between the titanium powder and the aluminum matrix promoted by mechanical activation due to accumulative roll bonding and thermal activation due to annealing leads to the formation of Ti-Al intermetallic compounds. The distribution of particles and the intermetallic compounds thus formed are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission SEM (FESEM), electron probe micro-analysis (EPMA), and optical microscopy. The composite produced with 5 wt pct particles after 20 cycles of rolling and annealing yields the best particle distribution and TiAl3 formation such that the only intermetallic compound formed is TiAl3. The highest TiAl3 contents are recorded in the Al-TiAl3 composite formed by 20 cycles of rolling and annealed after rolling cycle numbers 5 and 9 (2 hours at 430 °C), as well as 12, 17, and 20 (2 hours at 600 °C). Surface energy is found to decrease when the most faceted particles become spherical in shape at high temperatures during the annealing process. Particles as small as 250 nm in size are also observed to form in this composite, and thus fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. DB Miracle, Composites science and technology 2005, vol. 65, pp. 2526-2540.

    Article  CAS  Google Scholar 

  2. Nikhilesh Chawla and Yu-Lin Shen, Advanced engineering materials 2001, vol. 3, pp. 357-370.

    Article  CAS  Google Scholar 

  3. Varvara Alexandrovna Romanova, Ruslan Revovich Balokhonov and S Schmauder, Acta Materialia 2009, vol. 57, pp. 97-107.

    Article  CAS  Google Scholar 

  4. A. Yazdani, E. Salahinejad, Mater. Des 2011, 32, 3137-3142.

    Article  CAS  Google Scholar 

  5. V. Chianeh, HR Hosseini, M Nofar J. Alloys Compd 2009, 473, 127-132.

    Article  CAS  Google Scholar 

  6. S Catchpole-Smith, AT Clare, J. Mater. Process. Technol. 2017, 239, 230-239.

    Article  Google Scholar 

  7. YU Huashun, Chen Hongmei, Sun Liming and Min Guanghui, Rare Metals 2006, vol. 25, pp. 32-36.

    Article  Google Scholar 

  8. Q Zhang, BL Xiao, WG Wang and ZY Ma, Acta Materialia 2012, vol. 60, pp. 7090-7103.

    Article  CAS  Google Scholar 

  9. Xiaoming Wang, Animesh Jha and Rik Brydson, Materials Science and Engineering: A 2004, vol. 364, pp. 339-345.

    Article  Google Scholar 

  10. KM Shorowordi, Tahar Laoui, ASMA Haseeb, Jean-Pierre Celis and Ludo Froyen, Journal of Materials Processing Technology 2003, vol. 142, pp. 738-743.

    Article  CAS  Google Scholar 

  11. TW Clyne, PJ Withers: An introduction to metal matrix composites. (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  12. E. Efzan, M. Noor, N.S. Syazwani and M. M. Abdullah, Key Engineering Materials, Tech Publ, Taipei 2016, pp 102-110.

    Google Scholar 

  13. S. Suresh (2013) Fundamentals of Metal–Matrix Composites. Elsevier, Amsterdam

    Google Scholar 

  14. Yalda Afkham, Rasoul Azari Khosroshahi, Sajed Rahimpour, Cassra Aavani, Dermot Brabazon and Reza Taherzadeh Mousavian, Archives of Civil and Mechanical Engineering 2018, vol. 18, pp. 215-226.

    Article  Google Scholar 

  15. A Mozaffari, M Hosseini and H Danesh Manesh, Journal of Alloys and Compounds 2011, vol. 509, pp. 9938-9945.

    Article  CAS  Google Scholar 

  16. Y Saito, Nobuhiro Tsuji, H Utsunomiya, T Sakai and RG Hong, Scripta materialia 1998, vol. 39, pp. 1221-1227.

    Article  CAS  Google Scholar 

  17. M. Hosseini, N. Pardis, H.D. Manesh, M. Abbasi, DI Kim (2017) Mater. Des 113, 128–36

    Article  CAS  Google Scholar 

  18. BSB Reddy, Karabi Das and Siddhartha Das, Journal of Materials Science 2007, vol. 42, pp. 9366-9378.

    Article  CAS  Google Scholar 

  19. R Orru, G Cao and ZA Munir, Metallurgical and Materials Transactions A 1999, vol. 30, pp. 1101-1108.

    Article  CAS  Google Scholar 

  20. GP Chaudhari and VL Acoff, Intermetallics 2010, vol. 18, pp. 472-478.

    Article  CAS  Google Scholar 

  21. D. Yang, P. Hodgson, C. Wen, Intermetallics 2009, 17, 727-732.

    Article  Google Scholar 

  22. M Sujata, S Bhargava and S Sangal, Journal of materials science letters 1997, vol. 16, pp. 1175-1178.

    CAS  Google Scholar 

  23. AS Lopis, QG Reynolds and K Bisaka, Adv. Mater. Processes 2010, 24, 335-344

    Google Scholar 

  24. Q Zhang, BL Xiao and ZY Ma, Materials Chemistry and Physics 2013, vol. 139, pp. 596-602.

    Article  CAS  Google Scholar 

  25. L. Xu, YY. Cui, YL. Hao, R. Yang (2006) Mater. Sci. Eng. A 435, 638–647.

    Article  Google Scholar 

Download references

Acknowledgments

The Particulate Materials Research Group at the Department of Materials Engineering, Isfahan University of Technology, deserve the authors’ gratitude for their full support throughout this study. Our deep appreciation also goes to Dr. Ezzatollah Roustazadeh from ELC, IUT, for editing the final manuscript in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Panjepour.

Additional information

Manuscript submitted February 26, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safiri, M., Meratian, M. & Panjepour, M. Fabrication of Al-TiAl3 Composite Via In-Situ Accumulative Roll Bonding (ARB) and Annealing. Metall Mater Trans A 50, 415–425 (2019). https://doi.org/10.1007/s11661-018-4986-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4986-4

Navigation