Skip to main content
Log in

Catalytic Preparation of Si3N4-Bonded SiC Refractories and Their High-Temperature Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effects of Cr2O3 nanoparticles (NPs) on the catalytic nitridation of Si powders were investigated, and the results showed that the Cr2O3 NP catalysts enhanced the nitridation of Si powders and promoted the formation of Si3N4 whiskers. The complete conversion of Si was achieved at [1473 K (1200 °C)] for 3 hours with the addition of 3 wt pct Cr2O3 NPs. First-principle calculations suggested that the electron transfer from Cr2O3 to N2 molecules facilitates the Si nitridation. Moreover, Si3N4-bonded SiC refractories were also prepared using in-situ formed Cr2O3 NPs as catalysts, and the hot modulus of rupture at [1673 K (1400 °C)] of as-prepared refractories was about three times higher than that of samples without catalysts; the corrosion resistance against molten cryolite of the former was remarkably lower than that of the latter. The improvement was attributed to the catalytic effects of Cr2O3 NPs for in-situ formation of a fund of Si3N4 whiskers, which formed a network structure in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Wang: J. Am. Ceram. Soc., 2012, vol. 95, pp. 730–38.

    Article  CAS  Google Scholar 

  2. Y. Jiang, M. Chen, L. Feng, J. Chen, and B. Zhao: Ceram. Int., 2018, vol. 44, pp. 718–22.

    Article  CAS  Google Scholar 

  3. H.L. Hu, Y.P. Zeng, K.H. Zuo, Y.F. Xia, D.X. Yao, J. Günster, J.G. Heinrich, and S. Li: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 3781–87.

    Article  CAS  Google Scholar 

  4. G.P. Jiang and J.F. Yang: J. Am. Ceram. Soc., 2018, vol. 101, pp. 520–24.

    Article  CAS  Google Scholar 

  5. H. Klemm: J. Am. Ceram. Soc., 2010, vol. 93, pp. 1501–22.

    Article  CAS  Google Scholar 

  6. H. Hyuga, K. Yoshida, N. Kondo, H. Kita, J. Sugai, H. Okano, and J. Tsuchida: Ceram. Int., 2009, vol. 35, pp. 1927–32.

    Article  CAS  Google Scholar 

  7. J.F. Chen, N. Li, Y.W. Wei, B.Q. Han, and W. Yan: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 1821–29.

    Article  CAS  Google Scholar 

  8. J.T. Huang, Z.H. Huang, S.W. Zhang, M.H. Fang, and Y.G. Liu: J. Nanomater., 2014, vol. 2014, pp. 1–6.

    Google Scholar 

  9. L. Han, L. Huang, F. Li, J. Wang, Y. Pei, Y. Zeng, Q. Jia, H. Zhang, and S. Zhang: Ceram. Int., 2018, vol. 44, pp. 11088–11093.

    Article  CAS  Google Scholar 

  10. J. Liu, Y. Gu, F. Li, L. Lu, H. Zhang, and S. Zhang: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 4467–74.

    Article  CAS  Google Scholar 

  11. W. Zhao, H. Zhang, J. Liu, X. Deng, Y. Bi, and S. Zhang: J. Ceram. Soc. Jpn., 2017, vol. 125, pp. 623–27.

    Article  CAS  Google Scholar 

  12. M. Long, Y. Li, X. Jin, G. Yao, J. Sun, and R.V. Kumar: J. Am. Ceram. Soc., 2018, vol. 101, pp. 4350–56.

    Article  CAS  Google Scholar 

  13. H.N. Kim, J.W. Ko, J.M. Kim, Y.J. Park, J.W. Lee, H.D. Kim, S.S. Baek, S.J. Lee, and I.S. Seo: Ceram. Int., 2016, vol. 42, pp. 7072–79.

    Article  CAS  Google Scholar 

  14. S. Goel, A. Kumar, J.K. Quamara, and J. Kumar: Adv. Sci. Lett., 2014, vol. 20, pp. 1562–66.

    Article  Google Scholar 

  15. R.F.K. Gunnewiek, C.F. Mendes, and R.H.G.A. Kiminami: Mater. Lett., 2014, vol. 129, pp. 54–56.

    Article  CAS  Google Scholar 

  16. S.U. Rehman, F.K. Butt, B.U. Haq, S. AlFaify, W.S. Khan, and C. Li: Sol. Energy, 2018, vol. 169, pp. 648–57.

    Article  CAS  Google Scholar 

  17. S. Marutheeswaran and E.D. Jemmis: J. Phys. Chem. C, 2018, vol. 122, pp. 7945–50.

    Article  CAS  Google Scholar 

  18. Y. Zhou, W. Sun, W. Chu, J. Zheng, X. Gao, X. Zhou, and Y. Xue: Appl. Surf. Sci., 2018, vol. 435, pp. 521–28.

    Article  CAS  Google Scholar 

  19. H. Badem, A. Basturk, A. Caliskan, and M.E. Yuksel: Neurocomputing, 2017, vol. 266, pp. 506–26.

    Article  Google Scholar 

  20. Y. Gu, L. Lu, H. Zhang, Y. Cao, F. Li, and S. Zhang: J. Am. Ceram. Soc., 2015, vol. 98, pp. 1762–68.

    Article  CAS  Google Scholar 

  21. F. Liang, L. Lu, L. Tian, F. Li, H. Zhang, and S. Zhang: Sci. Rep., 2016, vol. 6, p. 31559-68.

    Article  CAS  Google Scholar 

  22. Y.W. Kim, Y.S. Chun, T. Nishimura, M. Mitomo, and Y.H. Lee: Acta. Mater., 2007, vol. 55, pp. 727–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51472185, 51502216, and 51672194), the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province (Grant No. T201602), and the Key Program of the Natural Science Foundation of Hubei Province (Grant No. 2017CFA004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liang or Haijun Zhang.

Additional information

Manuscript submitted April 27, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Zhao, W., Lu, L. et al. Catalytic Preparation of Si3N4-Bonded SiC Refractories and Their High-Temperature Properties. Metall Mater Trans A 50, 348–356 (2019). https://doi.org/10.1007/s11661-018-4984-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4984-6

Navigation