A New Approach Toward Designing and Synthesizing the Microalloying Zn Biodegradable Alloys with Improved Mechanical Properties


Zinc (Zn) possesses great potential for application in biomedical implants owing to its acceptable levels of biodegradability and biocompatibility. Unfortunately, pure Zn exhibits undesirably low strength and ductility because of the coarsening grain structures, which restrict the biomedical applications of Zn biodegradable metals. Meanwhile, high levels of multiple alloying elements, such as Al, Ag, Mg, Mn, Fe, and Sr, may result in adverse effects that require further medical treatment. In the current study, a new approach toward the design and synthesis of microalloying Zn biodegradable metals with improved mechanical properties is proposed, which relies on the synergetic effects of both grain refiner and fast cooling. Combined with experimental validation, this approach is applied to the microalloying Zn-Mg biodegradable metals. Firstly, the metallurgical interdependence theory is used together with the crystallographic edge-to-edge matching model to predict a new efficient grain refiner for pure Zn biodegradable metals. Then, the predicted grain refiner is prepared and added into super-high-purity Zn (99.995 wt pct) to determine the refining efficiency. The average grain size of microalloying Zn-Mg biodegradable metals was significantly reduced by 88.07 pct. Meanwhile, only 0.1 wt pct Mg promoted a noticeable columnar-to-equiaxed transition in the microstructures. Further, another decrease of 7.14 pct for the equiaxed grain sizes was obtained through introducing the fast cooling during solidification, where small, uniform and equiaxed grain structures fully occurred. Moreover, the mechanical properties of the microalloying Zn-Mg biodegradable metals with and without grain refinement were comparatively investigated. Below the maximum solubility (Cm), a remarkable improvement of the mechanical properties was generated by grain refinement and solid solution. However, a three-dimensional “eutectic-skeleton” formed beyond Cm, which deteriorated the corresponding mechanical properties to some extent. Finally, the mechanisms, responsible for grain refinement and the associated mechanical properties, were interpreted in line with the experimental results and theoretical analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Change history

  • 11 December 2018

    The geometrical illustration of the tensile sample in Figure 4 was reprinted with permission from Ref. [42]. In the original article there is an error in Figure 9(a). Following is the corrected Figure 9.


  1. 1.

    [1] D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák: Acta Biomater., 2011, vol.7, pp. 3515-22.

    Article  Google Scholar 

  2. 2.

    [2] N.S. Murni, M.S. Dambatta, S.K. Yeapb, G.R.A. Froemming, and H. Hermawan: Mater. Sci. Eng. C 2015, vol. 49, pp. 560-6.

    CAS  Article  Google Scholar 

  3. 3.

    [3] B. Zberg, P.J. Uggowitzer, and J.F. Löffler: Nature Mater., 2009, vol. 8, pp. 887-91.

    CAS  Article  Google Scholar 

  4. 4.

    [4] Y.F. Zheng, X.N. Gu, and F. Witte: Mater. Sci. Eng. R-Report 2014, vol. 77, pp. 1-34.

    Article  Google Scholar 

  5. 5.

    [5] J.R. Davis: Handbook of materials for medical devices, Materials Park, OH: ASM International, 2003.

    Google Scholar 

  6. 6.

    [6] C. Xiao, L. Wang, Y. Ren, Sh. Sun, E. Zhang, C. Yan, Q. Liu, X. Sun, F. Shou, J. Duan, H. Wang, and G. Qin: J. Mater. Sci. Technol., 2018, vol. 34(9), pp. 1618-27.

    Article  Google Scholar 

  7. 7.

    [7] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C.V. Schnakenburg: Biomaterials, 2006, vol. 27, pp. 4955-62.

    CAS  Article  Google Scholar 

  8. 8.

    [8] B. Liu and Y.F. Zheng: Acta Biomater., 2011, vol. 7, pp. 1407-20.

    CAS  Article  Google Scholar 

  9. 9.

    [9] M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, and M. Vedani: Mater. Sci. Eng. C, 2017, vol. 77, pp. 1170-81.

    CAS  Article  Google Scholar 

  10. 10.

    [10] X. Liu, J. Sun, Y. Yang, F. Zhou, Z. Pu, L. Li, and Y. Zheng: Mater. Lett., 2016, vol. 162, pp. 242-5.

    CAS  Article  Google Scholar 

  11. 11.

    [11] E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, and M. Vedani: J. Mech. Behav. Biomed. Mater., 2016, vol. 60, pp. 581-02.

    CAS  Article  Google Scholar 

  12. 12.

    [12] Y. Liu, Z. Yin, Y. Liu, C. Geng, X. Chen, J. Xu, and J. Peng: Int. J. Electrochem. Sci., 2018, vol. 13, pp. 1640-55.

    CAS  Article  Google Scholar 

  13. 13.

    [13] P.K. Bowen, J. Drelich, and J. Goldman: Adv. Mater., 2013, vol. 25, pp. 2577-82.

    CAS  Article  Google Scholar 

  14. 14.

    L. Rink: Zinc in Human Health, Ios Press, 2011.

    Google Scholar 

  15. 15.

    [15] A. Green and J. Wesemael: Die Cast. Eng., 2009, vol. 03, pp. 56-8.

    Google Scholar 

  16. 16.

    [16] Z.L. Liu: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4755-76.

    Article  Google Scholar 

  17. 17.

    [17] X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, and Y. Zheng: Mater. Des., 2016, vol. 94, pp. 95-104.

    CAS  Article  Google Scholar 

  18. 18.

    [18] Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, and G. Yuan: Mater. Des., 2017, vol. 117, pp. 84-94.

    CAS  Article  Google Scholar 

  19. 19.

    [19] H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, and X. Wang: Mater. Des., 2015, vol. 83, pp. 95-102.

    CAS  Article  Google Scholar 

  20. 20.

    [20] Z.Z. Shi, J. Yu, and X.F. Liu: Mater. Des., 2018, vol. 144, pp. 343-52.

    CAS  Article  Google Scholar 

  21. 21.

    [22] A. Kafri, S. Ovadia, J. Goldman, J. Drelich, and E. Aghion: Metals, 2018, vol. 8 153.

    Article  Google Scholar 

  22. 22.

    [23] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: Acta Mater., 2014, vol. 79, pp. 315-26.

    CAS  Article  Google Scholar 

  23. 23.

    [24] D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907-21.

    CAS  Article  Google Scholar 

  24. 24.

    S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen. L. Margulies, H.F. Poulsen, M.T. Rekveldt, and S. van der Zwaag: Science, 2002, vol. 298, pp. 1003-5.

    CAS  Article  Google Scholar 

  25. 25.

    [26] D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase transformation in metals and alloys, Taylor & Francis, London, 2009.

    Google Scholar 

  26. 26.

    [27] F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 360-70.

    CAS  Article  Google Scholar 

  27. 27.

    [28] Y. Ali, D. Qiu, B. Jiang, F. Pan, and M.X. Zhang: J. Alloys Compd., 2015, vol. 619, pp. 639-51.

    CAS  Article  Google Scholar 

  28. 28.

    [29] M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. StJohn: Scripta Mater., 2008, vol. 58, pp. 1050-3.

    CAS  Article  Google Scholar 

  29. 29.

    [30] W.J. Jackson: Iron Steel, 1972, vol. 45, pp. 163-72.

    CAS  Google Scholar 

  30. 30.

    [31] M.J. Balart, J.B. Patel, F. Gao, and Z. Fan: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4988-5011.

    Article  Google Scholar 

  31. 31.

    [32] M.X. Zhang, P.M. Kelly, M.A. Easton, and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 1427-38.

    CAS  Article  Google Scholar 

  32. 32.

    [33] M. Easton and D. StJohn: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1911-20.

    CAS  Article  Google Scholar 

  33. 33.

    [34] D.M. Duffy: Science, 2017, vol. 358, pp. 1254-55.

    CAS  Article  Google Scholar 

  34. 34.

    [35] D. Qiu, M.X. Zhang, J.A. Taylor, and P.M. Kelly: Acta Mater., 2009, vol. 57, pp. 3052-9.

    CAS  Article  Google Scholar 

  35. 35.

    [36] F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 5636-45.

    CAS  Article  Google Scholar 

  36. 36.

    [37] D. Qiu, M.X. Zhang, and P.M. Kelly: Scripta Mater., 2009, vol. 61, pp. 312-5.

    CAS  Article  Google Scholar 

  37. 37.

    [38] Y. Zeng, B. Jiang, M. Zhang, H. Yin, R. Li, and F. Pan: Intermetallics, 2014, vol. 45, pp. 18-23.

    CAS  Article  Google Scholar 

  38. 38.

    [39] M. Li, J.M. Li, D. Qiu, Q. Zhang, G. Wang, and M.X. Zhang: Philos. Mag., 2016, vol. 96, pp. 1556-78.

    CAS  Article  Google Scholar 

  39. 39.

    [40] H. Baker: Alloy Phase Diagrams, ASM Handbook, Vol. 3, Materials Park, OH: ASM International, 1992.

    Google Scholar 

  40. 40.

    G. Hercz, D.L. Andress, H.G. Nebeker, J.H. Shinaberger, D.J. Sherrard, and J.W. Coburn: Am. J. Kidney Dis., 1988, vol. 11(1), pp. 70-5.

    CAS  Article  Google Scholar 

  41. 41.

    [42] J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml: Mater. Sci. Eng. C, 2016, vol. 58, pp. 24-35.

    Article  Google Scholar 

  42. 42.

    [43] Z.L. Liu, R.Q. Li, R.P. Jiang, X.Q. Li, and M.X. Zhang: J. Alloys Compd., 2016, vol. 687, pp. 885-92.

    CAS  Article  Google Scholar 

  43. 43.

    K. Törne, F.A. Khan, A. Örnberg, and J. Weissenrieder: Surf. Innovations, 2018, vol. 6(1-2), pp. 81-92.

    Google Scholar 

  44. 44.

    [45] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 830-41.

    Article  Google Scholar 

  45. 45.

    [46] C.H. Cáceres and D.M. Rovera: J. Light Met., 2001, vol. 1, pp. 151-6.

    Article  Google Scholar 

  46. 46.

    [47] B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, and M. Easton: Mater. Sci. Eng. A, 2014, vol. 599, pp. 204-11.

    CAS  Article  Google Scholar 

  47. 47.

    [48] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: J. Appl. Cryst., 2015, vol. 48, pp. 890-900.

    CAS  Article  Google Scholar 

Download references


This project was financially supported by National Natural Science Foundation of China with No. 51605496. Sincere appreciation is conveyed to Professor Mingxing Zhang for his kind supervision when the experimental work was being partially carried out at The University of Queensland, and to Mr. Jingqi Zhang at The University of Queensland while carrying out some part of the E2EM simulation work. Zhilin Liu appreciates Jing Ouyang (his wife) for her love, support, and understanding right through the course of his undertaking this work.

Author information



Corresponding author

Correspondence to Zhilin Liu.

Additional information

Manuscript submitted July 4, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z. A New Approach Toward Designing and Synthesizing the Microalloying Zn Biodegradable Alloys with Improved Mechanical Properties. Metall and Mat Trans A 50, 311–325 (2019). https://doi.org/10.1007/s11661-018-4978-4

Download citation