Skip to main content

Advertisement

Log in

Microstructure, Mechanical Properties, and Sliding Wear Behavior of Spark Plasma Sintered Ti-Cu Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-Cu alloys have attracted significant interests for use in dental and orthopedic implants because of excellent antibacterial activity. However, limited research efforts have been devoted to their sliding wear behavior. Herein, we have fabricated nearly fully dense ultra-fine-grained Ti-Cu alloys with the Cu contents of 5 and 25 at. pct using a combination of high energy ball milling and spark plasma sintering (SPS) and systematically investigated their microstructure, mechanical properties, and sliding wear behavior. The results show that the Ti95Cu5 alloy consists of Ti2Cu precipitates uniformly distributed in an α-Ti matrix. This particular microstructure results in excellent mechanical properties, including a compressive yield strength of up to 1593 MPa, compressive strength of over 2400 MPa, and fracture strain of up to 26.8 pct. Conversely, the bulk Ti75Cu25 alloy consists mainly of Ti2Cu with a small amount of α-Ti and exhibited a slightly higher yield strength but reduced compressive strength and fracture strain. The hardness and yield strength of the Ti-Cu alloys were approximately three times and one order of magnitude higher, respectively, than those of commercially pure Ti. Sliding wear tests reveal that the wear mechanism of the ultra-fine-grained Ti-Cu alloys is distinct from that of CP-Ti and that the wear resistance is enhanced with increasing Ti2Cu content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. 1. M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia: Prog. Mater. Sci., 2009, vol. 54, pp. 397-425.

    Article  CAS  Google Scholar 

  2. Q. Chen and G.A. Thouas (2015) Mater. Sci. Eng. R, vol. 87, pp. 1-57.

    Article  Google Scholar 

  3. 3. M. Long and H. J. Rack: Biomaterials, 1998, vol. 19, pp. 1621-1639.

    Article  CAS  Google Scholar 

  4. 4. Mitsuo Niinomi, Masaaki Nakai and Junko Hieda: Acta Biomater., 2012, vol. 8, pp. 3888-3903.

    Article  CAS  Google Scholar 

  5. 5. T. Okabe and H. Hero: Cells and Materials, 1995, vol. 5, pp. 211-230.

    Google Scholar 

  6. E. Svanidze, T. Besara, M.F. Ozaydin, C.S. Tiwary, J.K. Wang, S. Radhakrishnan, S. Mani, Y. Xin, K. Han, H. Liang, T. Siegrist, P.M. Ajayan and E. Morosan: Sci. Adv., 2016, vol. 2, p. e1600319.

    Article  Google Scholar 

  7. 7. Wen-Fu Ho, Wei-Kai Chen, Shih-Ching Wu and Hsueh-Chuan Hsu: J. Mater. Sci.: Mater. Med., 2008, vol. 19, pp. 3179-3186.

    CAS  Google Scholar 

  8. 8. C. OHKUBO, S. HANATANI and T. HOSOI: J. Oral Rehabil., 2008, vol. 35, pp. 706-714.

    Article  CAS  Google Scholar 

  9. 9. S. D. Heintze: Dent. Mater., 2006, vol. 22, pp. 712-734.

    Article  CAS  Google Scholar 

  10. ACL Faria, RCS Rodrigues, APRA Claro, M da Gloria Chiarello de Mattos, RF Ribeiro: J. Mech. Behav. Biomed. Mater., 2011, vol. 4, pp. 1873-1879

    Article  CAS  Google Scholar 

  11. 11. M. Taira, J. B. Moser and E. H. Greener: Dent. Mater., 1989, vol. 5, pp. 45-50.

    Article  CAS  Google Scholar 

  12. 12. E. P. Lautenschlager and P. Monaghan: Int. Dent. J., 1993, vol. 43, pp. 245-253.

    CAS  Google Scholar 

  13. 13. Masafumi Kikuchi, Masatoshi Takahashi and Osamu Okuno: Dent. Mater., 2006, vol. 22, pp. 641-646.

    Article  CAS  Google Scholar 

  14. 14. Masatoshi Takahashi, Masafumi Kikuchi, Yukyo Takada and Osamu Okuno: Dent. Mater. J., 2002, vol. 21, pp. 270-280.

    Article  Google Scholar 

  15. 15. Masafumi Kikuchi, Yukyo Takada, Seigo Kiyosue, Masanobu Yoda, Margaret Woldu, Zhuo Cai, Osamu Okuno and Toru Okabe: Dent. Mater., 2003, vol. 19, pp. 174-181.

    Article  CAS  Google Scholar 

  16. E. Zhang, J. Ren, S. Li, L. Yang and G. Qin: Biomed. Mater. 2016, vol. 11, p. 065001.

    Article  Google Scholar 

  17. X. Yao, Q. Y. Sun, L. Xiao and J. Sun: J. Alloys Compd., 2009, vol. 484, pp. 196-202.

    Article  CAS  Google Scholar 

  18. 18. Yukyo Takada and Osamu Okuno: Dent. Mater. J., 2005, vol. 24, pp. 610-616.

    Article  CAS  Google Scholar 

  19. V. Guiñón-Pina, V. Amigó and A. Igual-Muñoz: Corros. Sci., 2016, vol. 109, pp. 115-125.

    Article  Google Scholar 

  20. Cong Liu and Erlin Zhang: J. Mater. Sci.: Mater. Med., 2015, vol. 26, p. 142.

    Google Scholar 

  21. 21. Masafumi Kikuchi, Yukyo Takada, Seigo Kiyosue, Masanobu Yoda, Margaret Woldu, Zhuo Cai, Osamu Okuno and Toru Okabe: Dent. Mater., 2003, vol. 19, pp. 375-381.

    Article  CAS  Google Scholar 

  22. 22. J. C. Keller, F. A. Young, C. F. Marcinak and B. Hansel: Biomaterials, 1985, vol. 6, pp. 252-256.

    Article  CAS  Google Scholar 

  23. E Zhang, L Zheng, J Liu, B Bai and C Liu: Mater. Sci. Eng. C, 2015, vol. 46, pp. 148-157.

    Article  Google Scholar 

  24. Bing Bai, Erlin Zhang, Hui Dong and Jie Liu: J. Mater. Sci.: Mater. Med., 2015, vol. 26, p. 265.

    Google Scholar 

  25. R. Liu, K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R. P. Allaker, L. Ren and K. Yang: Sci. Rep. 2016, vol. 6, p. 29985.

    Article  CAS  Google Scholar 

  26. 26. T. Shirai, H. Tsuchiya, T. Shimizu, K. Ohtani, Y. Zen and K. Tomita: J. Biomed. Mater. Res., Part B, 2009, vol. 91, pp. 373-380.

    Article  Google Scholar 

  27. E. Zhang, F. Li, H. Wang, J. Liu, C. Wang, M. Li and K. Yang (2013) Mater. Sci. Eng. C, vol. 33, pp. 4280-4287.

    Article  CAS  Google Scholar 

  28. J. Liu, X. Zhang, H. Wang, F. Li, M. Li, K. Yang and E. Zhang: Biomed. Mater., 2014, vol. 9:3045-3053.

    Google Scholar 

  29. J. Liu, F. Li, C. Liu, H. Wang, B. Ren, K. Yang and E. Zhang (2014) Mater. Sci. Eng. C, vol. 35, pp. 392-400.

    Article  Google Scholar 

  30. 30. E. S. Thian, N. H. Loh, K. A. Khor and S. B. Tor: Biomaterials, 2002, vol. 23, pp. 2927-2938.

    Article  CAS  Google Scholar 

  31. 31. Yong-Hua Li, Nan Chen, Hai-Tao Cui and Fang Wang: J. Alloys Compd., 2017, vol. 723, pp. 967-973.

    Article  CAS  Google Scholar 

  32. 32. K. B. Gerasimov, A. A. Gusev, E. Y. Ivanov and V. V. Boldyrev: J. Mater. Sci., 1991, vol. 26, pp. 2495-2500.

    Article  CAS  Google Scholar 

  33. 33. In-Jin Shon, Na-Ri Kim, Song-Lee Du, Sung-Wook Cho and Wonbaek Kim: J. Nanosci. Nanotechnol., 2011, vol. 11, pp. 7258-7260.

    Article  CAS  Google Scholar 

  34. 34. In-Jin Shon, Na-Ri Kim, Song-Lee Du, In-Yoong Ko, Sung-Wook Cho and Wonbaek Kim: Mater. Trans., 2010, vol. 51, pp. 2129-2131.

    Article  CAS  Google Scholar 

  35. M. R. Akbarpour and S. Moniri-Javadhesari: J. Alloys Compd., 2017, vol. 699, pp. 882-886.

    Article  CAS  Google Scholar 

  36. 36. K. N. Campo, E. S. N. Lopes, C. J. Parrish and R. Caram: Acta Mater., 2017, vol. 139, pp. 86-95.

    Article  CAS  Google Scholar 

  37. AM Reza and HF Alikhani: Mater. Res. Express, 2016, vol. 3, p. 045004.

    Article  Google Scholar 

  38. M Park and CA Schuh: Nat Commun, 2015, vol. 6, p. 6858.

    Article  CAS  Google Scholar 

  39. 39. C. Ohkubo, I. Shimura, T. Aoki, S. Hanatani, T. Hosoi, M. Hattori, Y. Oda and T. Okabe: Biomaterials, 2003, vol. 24, pp. 3377-3381.

    Article  CAS  Google Scholar 

  40. Feifei Yu, Hefeng Wang, Guozheng Yuan and Xuefeng Shu: Appl. Phys. A: Mater. Sci. Process., 2017, vol. 123, p. 278.

    Google Scholar 

  41. 41. H. Okamoto: J. Phase Equilib., 1994, vol. 15, pp. 566-567.

    Article  Google Scholar 

  42. E Zhang, X Wang, M Chen and B Hou (2016) Mater. Sci. Eng. C, vol. 69, pp. 1210-1221.

    Article  CAS  Google Scholar 

  43. 43. Weiwei Zhu, Cancan Zhao, Jian Zhou, Chi Tat Kwok and Fuzeng Ren: J. Alloys Compd., 2018, vol. 748, pp. 961-969.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant no. 51501087) and the Fundamental Research Program of Shenzhen (Grant Nos. JCYJ20170307110418960, JCYJ20170412153039309, and JCYJ20160530185550416). This work was also supported by the Pico Center at SUSTech that receives support from Presidential Fund and Development and Reform Commission of Shenzhen Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuzeng Ren.

Additional information

Manuscript submitted May 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, R., Zhu, W., Zhao, C. et al. Microstructure, Mechanical Properties, and Sliding Wear Behavior of Spark Plasma Sintered Ti-Cu Alloys. Metall Mater Trans A 49, 6147–6160 (2018). https://doi.org/10.1007/s11661-018-4953-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4953-0

Navigation